PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  An Arrayed Genome-Scale Lentiviral-Enabled Short Hairpin RNA Screen Identifies Lethal and Rescuer Gene Candidates 
Abstract
RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general.
doi:10.1089/adt.2012.475
PMCID: PMC3619155  PMID: 23198867
2.  An Arrayed RNA Interference Genome-Wide Screen Identifies Candidate Genes Involved in the MicroRNA 21 Biogenesis Pathway 
Abstract
MicroRNAs (miRNAs) are evolutionary conserved noncoding molecules that regulate gene expression. They influence a number of diverse biological functions, such as development and differentiation. However, their dysregulation has been shown to be associated with disease states, such as cancer. Genes and pathways regulating their biogenesis remain unknown and are highly sought after. For this purpose, we have validated a multiplexed high-content assay strategy to screen for such modulators. Here, we describe its implementation that makes use of a cell-based gain-of-function reporter assay monitoring enhanced green fluorescent protein expression under the control of miRNA 21 (miR-21); combined with measures of both cell metabolic activities through the use of Alamar Blue and cell death through imaged Hoechst-stained nuclei. The strategy was validated using a panel of known genes and enabled us to successfully progress to and complete an arrayed genome-wide short interfering RNA (siRNA) screen against the Ambion Silencer Select v4.0 library containing 64,755 siRNA duplexes covering 21,565 genes. We applied a high-stringency hit analysis method, referred to as the Bhinder–Djaballah analysis method, leading to the nomination of 1,273 genes as candidate inhibitors of the miR-21 biogenesis pathway; after several iterations eliminating those genes with only one active duplex and those enriched in seed sequence mediated off-target effects. Biological classifications revealed four major control junctions among them vesicular transport via clathrin-mediated endocytosis. Altogether, our screen has uncovered a number of novel candidate regulators that are potentially good druggable targets allowing for the discovery and development of small molecules for regulating miRNA function.
doi:10.1089/adt.2012.477
PMCID: PMC3619226  PMID: 23153064
3.  Flaviviruses Are Sensitive to Inhibition of Thymidine Synthesis Pathways 
Journal of Virology  2013;87(17):9411-9419.
Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.
doi:10.1128/JVI.00101-13
PMCID: PMC3754125  PMID: 23824813
4.  A Novel High-Throughput 1536-well Notch1 γ-Secretase AlphaLISA Assay 
The Notch pathway plays a crucial role in cell fate decisions through controlling various cellular processes. Overactive Notch signal contributes to cancer development from leukemias to solid tumors. γ-Secretase is an intramembrane protease responsible for the final proteolytic step of Notch that releases the membrane-tethered Notch fragment for signaling. Therefore, γ-secretase is an attractive drug target in treating Notch-mediated cancers. However, the absence of high-throughput γ-secretase assay using Notch substrate has limited the identification and development of γ-secretase inhibitors that specifically target the Notch signaling pathway. Here, we report on the development of a 1536-well γ-secretase assay using a biotinylated recombinant Notch1 substrate. We effectively assimilated and miniaturized this newly developed Notch1 substrate with the AlphaLISA detection technology and demonstrated its robustness with a calculated Z’ score of 0.66. We further validated this optimized assay by performing a pilot screening against a chemical library consisting of ~5,600 chemicals and identified known γ-secretase inhibitors e.g. DAPT, and Calpeptin; as well as a novel γ-secretase inhibitor referred to as KD-I-085. This assay is the first reported 1536-well AlphaLISA format and represents a novel high-throughput Notch1-γ-secretase assay, which provides an unprecedented opportunity to discover Notch-selective γ-secretase inhibitors that can be potentially used for the treatment of cancer and other human disorders.
PMCID: PMC3664143  PMID: 23448293
Alzheimer disease; AlphaLISA; cancer; γ-secretase; γ-secretase modulators; Notch signaling
5.  A high density assay format for the detection of novel cytotoxicagents in large chemical libraries 
The Alamar Blue (AB) assay, which incorporates a redox indicator that causes a fluorescence signal enhancement in response to metabolic activity, is commonly used to assess the viability of mammalian cells. In response to the need for homogeneous, inexpensive, high throughput assays for anti-cancer drug screening, a 1536-well microtiter plate based assay which utilizes the AB fluorescent dye as a measure of cellular growth was developed and validated in 10 µL assay volume. The performance and robustness of the miniaturized assay was assessed using a human Mantle Cell Lymphoma (MCL) cell line in a pilot screen against a library of 2,000 known bioactive chemicals; with an overall Z’ value of 0.89 for assay robustness, several known cytotoxic agents were identified including and not limited to anthracyclines, cardiac glycosides, gamboges, and quinones. To further test the sensitivity of the assay, IC50 determinations were performed in both 384-well and 1536-well formats and the obtained results show a very good correlation between the two density formats. These findings demonstrate that this newly developed assay is simple to set up, robust, highly sensitive and inexpensive. The non-radiometric strategy employed in this study should also offer the potential for the rapid screening, without a wash or a lysis step, of well established and primary tumor cell lines against large chemical libraries using the 1536-well microtiter plates.
doi:10.1080/14756360701810082
PMCID: PMC3710589  PMID: 18608772
Assay; miniaturization; Alamar Blue; cytotoxicity; anthracyclines; screening; HTS; fluorescence; resazurin; cell viability; NCEB1; cancer
6.  A High Throughput Scintillation Proximity Imaging Assay for Protein Methyltransferases 
Protein methyltransferases (PMTs) orchestrate epigenetic modifications through post-translational methylation of various protein substrates including histones. Since dysregulation of this process is widely implicated in many cancers, it is of pertinent interest to screen inhibitors of PMTs, as they offer novel target-based opportunities to discover small molecules with potential chemotherapeutic use. We have thus developed an enzymatic screening strategy, which can be adapted to scintillation proximity imaging assay (SPIA) format, to identify these inhibitors. We took advantage of S-adenosyl-L-[3H-methyl]-methionine availability and monitored the enzymatically catalyzed [3H]-methyl addition on lysine residues of biotinylated peptide substrates. The radiolabeled peptides were subsequently captured by streptavidin coated SPA imaging PS beads. We applied this strategy to four PMTs: SET7/9, SET8, SETD2, and EuHMTase1, and optimized assay conditions to achieve Z′ values ranging from 0.48 to 0.91. The robust performance of this SPIA for the four PMTs was validated in a pilot screen of approximately 7,000 compounds. We identified 80 cumulative hits across the four targets. NF279, a suramin analogue found to specifically inhibit SET7/9 and SETD2 with IC50 values of 1.9 and 1.1 μM, respectively. Another identified compound, Merbromin, a topical antiseptic, was classified as a pan-active inhibitor of the four PMTs. These findings demonstrate that our proposed SPIA strategy is generic for multiple PMTs and can be successfully implemented to identify novel and specific inhibitors of PMTs. The specific PMT inhibitors may constitute a new class of anti-proliferative agents for potential therapeutic use.
PMCID: PMC3553658  PMID: 22256970
protein methyl transferases; drug discovery; inhibit or; SET7/9; SET8; SETD2; EuHMTase1; SPA technology; red shifted imaging beads
7.  Development and Validation of a High-density Fluorescence Polarization-based Assay for the Trypanosoma RNA Triphosphatase TbCet1 
RNA triphosphatases are attractive and mostly unexplored therapeutic targets for the development of broad spectrum antiprotozoal, antiviral and antifungal agents. The use of malachite green as a readout for phosphatases is well characterized and widely employed. However, the reaction depends on high quantities of inorganic phosphate to be generated, which makes this assay not easily amenable to screening in 1536-well format. The overly long reading times required also prohibit its use to screen large chemical libraries. To overcome these limitations, we sought to develop a fluorescence polarization (FP) -based assay for triphosphatases, compatible with miniaturization and fast readouts. For this purpose, we took advantage of the nucleoside triphosphatase activity of this class of enzyme to successfully adapt the Transcreener™ ADP assay based on the detection of generated ADP by immunocompetition fluorescence polarization to the RNA triphosphatase TbCet1 in 1536-well format. We also tested the performance of this newly developed assay in a pilot screen of 3,000 compounds and we confirmed the activity of the obtained hits. We present and discuss our findings and their importance for the discovery of novel drugs by high-throughput screening.
PMCID: PMC3626118  PMID: 19275531
triphosphatase; drug discovery; high-throughput screening; fluorescence polarization
8.  High-Content Assay to Identify Inhibitors of Dengue Virus Infection 
Abstract
Dengue virus (DENV) infections are vectored by mosquitoes and constitute one of the most prevalent infectious diseases in many parts of the world, affecting millions of people annually. Current treatments for DENV infections are nonspecific and largely ineffective. In this study, we describe the adaptation of a high-content cell-based assay for screening against DENV-infected cells to identify inhibitors and modulators of DENV infection. Using this high-content approach, we monitored the inhibition of test compounds on DENV protein production by means of immunofluorescence staining of DENV glycoprotein envelope, simultaneously evaluating cytotoxicity in HEK293 cells. The adapted 384-well microtiter-based assay was validated using a small panel of compounds previously reported as having inhibitory activity against DENV infections of cell cultures, including compounds with antiviral activity (ribavirin), inhibitors of cellular signaling pathways (U0126), and polysaccharides that are presumed to interfere with virus attachment (carrageenan). A screen was performed against a collection of 5,632 well-characterized bioactives, including U.S. Food and Drug Administration–approved drugs. Assay control statistics show an average Z' of 0.63, indicative of a robust assay in this cell-based format. Using a threshold of >80% DENV inhibition with <20% cellular cytotoxicity, 79 compounds were initially scored as positive hits. A follow-up screen confirmed 73 compounds with IC50 potencies ranging from 60 nM to 9 μM and yielding a hit rate of 1.3%. Over half of the confirmed hits are known to target transporters, receptors, and protein kinases, providing potential opportunity for drug repurposing to treat DENV infections. In summary, this assay offers the opportunity to screen libraries of chemical compounds, in an effort to identify and develop novel drug candidates against DENV infections.
doi:10.1089/adt.2010.0321
PMCID: PMC2962577  PMID: 20973722
9.  A Miniaturized 1536-Well Format γ-Secretase Assay 
γ-Secretase is an aspartyl protease that cleaves multiple substrates including the amyloid precursor protein (APP) and the Notch proteins. Abnormal proteolysis of APP is involved in the pathogenesis of Alzheimer’s disease (AD) and overactive Notch signaling plays an oncogenic role in a variety of cancers. γ-Secretase has emerged as a promising target for drug development in the treatment of AD and cancer. Assays with increased capacity for high-throughput screening would allow for quicker screening of chemical libraries and facilitate inhibitor development. We have developed a homogeneous time-resolved fluorescence (HTRF)-based assay that makes use of a novel biotinylated recombinant APP substrate and solubilized membrane preparation as the source of the γ-secretase enzyme. The assay was miniaturized to a 1536-well format and validated in a pilot screen against a library of ∼3,000 compounds. The overall assay performance was robust due to a calculated Z′ factor of 0.74 and its demonstrated ability to identify known γ-secretase inhibitors such as pepstatin A. This validated assay can readily be used for primary screening against large chemical libraries searching for novel inhibitors of γ-secretase activity that may represent potential therapeutics for AD and a variety of neoplasms.
doi:10.1089/adt.2009.0202
PMCID: PMC3096545  PMID: 19715456

Results 1-9 (9)