PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete 
PLoS ONE  2015;10(7):e0133705.
We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase.
doi:10.1371/journal.pone.0133705
PMCID: PMC4514598  PMID: 26207753
2.  Phosphate-Controlled Regulator for the Biosynthesis of the Dalbavancin Precursor A40926▿ † 
Journal of Bacteriology  2007;189(22):8120-8129.
The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of the novel antibiotic dalbavancin. Previous studies have shown that phosphate limitation results in enhanced A40926 production. The A40926 biosynthetic gene (dbv) cluster, which consists of 37 genes, encodes two putative regulators, Dbv3 and Dbv4, as well as the response regulator (Dbv6) and the sensor-kinase (Dbv22) of a putative two-component system. Reverse transcription-PCR (RT-PCR) and real-time RT-PCR analysis revealed that the dbv14-dbv8 and the dbv30-dbv35 operons, as well as dbv4, were negatively influenced by phosphate. Dbv4 shows a putative helix-turn-helix DNA-binding motif and shares sequence similarity with StrR, the transcriptional activator of streptomycin biosynthesis in Streptomyces griseus. Dbv4 was expressed in Escherichia coli as an N-terminal His6-tagged protein. The purified protein bound the dbv14 and dbv30 upstream regions but not the region preceding dbv4. Bbr, a Dbv4 ortholog from the gene cluster for the synthesis of the glycopeptide balhimycin, also bound to the dbv14 and dbv30 upstream regions, while Dbv4 bound appropriate regions from the balhimycin cluster. Our results provide new insights into the regulation of glycopeptide antibiotics, indicating that the phosphate-controlled regulator Dbv4 governs two key steps in A40926 biosynthesis: the biosynthesis of the nonproteinogenic amino acid 3,5-dihydroxyphenylglycine and critical tailoring reactions on the heptapeptide backbone.
doi:10.1128/JB.01247-07
PMCID: PMC2168674  PMID: 17873036

Results 1-2 (2)