PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Powerful fusion: PSI-BLAST and consensus sequences 
Bioinformatics (Oxford, England)  2008;24(18):1987-1993.
Motivation
A typical PSI-BLAST search consists of iterative scanning and alignment of a large sequence database during which a scoring profile is progressively built and refined. Such a profile can also be stored and used to search against a different database of sequences. Using it to search against a database of consensus rather than native sequences is a simple add-on that boosts performance surprisingly well. The improvement comes at a price: we hypothesized that random alignment score statistics would differ between native and consensus sequences. Thus PSI-BLAST-based profile searches against consensus sequences might incorrectly estimate statistical significance of alignment scores. In addition, iterative searches against consensus databases may fail. Here, we addressed these challenges in an attempt to harness the full power of the combination of PSI-BLAST and consensus sequences.
Results
We studied alignment score statistics for various types of consensus sequences. In general, the score distribution parameters of profile-based consensus sequence alignments differed significantly from those derived for the native sequences. PSI-BLAST partially compensated for the parameter variation. We have identified a protocol for building specialized consensus sequences that significantly improved search sensitivity and preserved score distribution parameters. As a result, PSI-BLAST profiles can be used to search specialized consensus sequences without sacrificing estimates of statistical significance. We also provided results indicating that iterative PSI-BLAST searches against consensus sequences could work very well. Overall, we showed how a widely popular and effective method could be used to identify significantly more relevant similarities among protein sequences.
Availability
http://www.rostlab.org/services/consensus/
Contact:
dsp23@columbia.edu
doi:10.1093/bioinformatics/btn384
PMCID: PMC2577777  PMID: 18678588
2.  Powerful fusion: PSI-BLAST and consensus sequences 
Bioinformatics  2008;24(18):1987-1993.
Motivation: A typical PSI-BLAST search consists of iterative scanning and alignment of a large sequence database during which a scoring profile is progressively built and refined. Such a profile can also be stored and used to search against a different database of sequences. Using it to search against a database of consensus rather than native sequences is a simple add-on that boosts performance surprisingly well. The improvement comes at a price: we hypothesized that random alignment score statistics would differ between native and consensus sequences. Thus PSI-BLAST-based profile searches against consensus sequences might incorrectly estimate statistical significance of alignment scores. In addition, iterative searches against consensus databases may fail. Here, we addressed these challenges in an attempt to harness the full power of the combination of PSI-BLAST and consensus sequences.
Results: We studied alignment score statistics for various types of consensus sequences. In general, the score distribution parameters of profile-based consensus sequence alignments differed significantly from those derived for the native sequences. PSI-BLAST partially compensated for the parameter variation. We have identified a protocol for building specialized consensus sequences that significantly improved search sensitivity and preserved score distribution parameters. As a result, PSI-BLAST profiles can be used to search specialized consensus sequences without sacrificing estimates of statistical significance. We also provided results indicating that iterative PSI-BLAST searches against consensus sequences could work very well. Overall, we showed how a very popular and effective method could be used to identify significantly more relevant similarities among protein sequences.
Availability: http://www.rostlab.org/services/consensus/
Contact: dariusz@mit.edu
doi:10.1093/bioinformatics/btn384
PMCID: PMC2577777  PMID: 18678588
3.  Consensus sequences improve PSI-BLAST through mimicking profile–profile alignments 
Nucleic Acids Research  2007;35(7):2238-2246.
Sequence alignments may be the most fundamental computational resource for molecular biology. The best methods that identify sequence relatedness through profile–profile comparisons are much slower and more complex than sequence–sequence and sequence–profile comparisons such as, respectively, BLAST and PSI-BLAST. Families of related genes and gene products (proteins) can be represented by consensus sequences that list the nucleic/amino acid most frequent at each sequence position in that family. Here, we propose a novel approach for consensus-sequence-based comparisons. This approach improved searches and alignments as a standard add-on to PSI-BLAST without any changes of code. Improvements were particularly significant for more difficult tasks such as the identification of distant structural relations between proteins and their corresponding alignments. Despite the fact that the improvements were higher for more divergent relations, they were consistent even at high accuracy/low error rates for non-trivially related proteins. The improvements were very easy to achieve; no parameter used by PSI-BLAST was altered and no single line of code changed. Furthermore, the consensus sequence add-on required relatively little additional CPU time. We discuss how advanced users of PSI-BLAST can immediately benefit from using consensus sequences on their local computers. We have also made the method available through the Internet (http://www.rostlab.org/services/consensus/).
doi:10.1093/nar/gkm107
PMCID: PMC1874647  PMID: 17369271
4.  Predicting transmembrane beta-barrels in proteomes 
Nucleic Acids Research  2004;32(8):2566-2577.
Very few methods address the problem of predicting beta-barrel membrane proteins directly from sequence. One reason is that only very few high-resolution structures for transmembrane beta-barrel (TMB) proteins have been determined thus far. Here we introduced the design, statistics and results of a novel profile-based hidden Markov model for the prediction and discrimination of TMBs. The method carefully attempts to avoid over-fitting the sparse experimental data. While our model training and scoring procedures were very similar to a recently published work, the architecture and structure-based labelling were significantly different. In particular, we introduced a new definition of beta- hairpin motifs, explicit state modelling of transmembrane strands, and a log-odds whole-protein discrimination score. The resulting method reached an overall four-state (up-, down-strand, periplasmic-, outer-loop) accuracy as high as 86%. Furthermore, accurately discriminated TMB from non-TMB proteins (45% coverage at 100% accuracy). This high precision enabled the application to 72 entirely sequenced Gram-negative bacteria. We found over 164 previously uncharacterized TMB proteins at high confidence. Database searches did not implicate any of these proteins with membranes. We challenge that the vast majority of our 164 predictions will eventually be verified experimentally. All proteome predictions and the PROFtmb prediction method are available at http://www.rostlab.org/services/PROFtmb/.
doi:10.1093/nar/gkh580
PMCID: PMC419468  PMID: 15141026
5.  EVA: evaluation of protein structure prediction servers 
Nucleic Acids Research  2003;31(13):3311-3315.
EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.
PMCID: PMC169025  PMID: 12824315

Results 1-5 (5)