PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Induction of GADD34 Is Necessary for dsRNA-Dependent Interferon-β Production and Participates in the Control of Chikungunya Virus Infection 
PLoS Pathogens  2012;8(5):e1002708.
Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.
Author Summary
Nucleic acids detection by multiple molecular sensors results in type-I interferon production, which protects cells and tissues from viral infections. At the intracellular level, the detection of double-stranded RNA by one of these sensors, the dsRNA-dependent protein kinase also leads to the profound inhibition of protein synthesis. We describe here that the inducible phosphatase 1 co-factor Ppp1r15a/GADD34, a well known player in the endoplasmic reticulum unfolded protein response (UPR), is activated during double-stranded RNA detection and is absolutely necessary to allow cytokine production in cells exposed to poly I:C or Chikungunya virus. Our data shows that the cellular response to nucleic acids can reveal unanticipated connections between innate immunity and fundamental stress pathways, such as the ATF4 branch of the UPR.
doi:10.1371/journal.ppat.1002708
PMCID: PMC3355096  PMID: 22615568
2.  Regulation of translation is required for dendritic cell function and survival during activation 
The Journal of Cell Biology  2007;179(7):1427-1439.
In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. Here, we show that in response to lipopolysaccharides, protein synthesis is rapidly enhanced in DCs. This enhancement occurs via a PI3K-dependent signaling pathway and is key for DC activation. In addition, we show that later on, in a manner similar to viral or apoptotic stress, DC activation leads to the phosphorylation and proteolysis of important translation initiation factors, thus inhibiting cap-dependent translation. This inhibition correlates with major changes in the origin of the peptides presented by MHC class I and the ability of mature DCs to prevent cell death. Our observations have important implications in linking translation regulation with DC function and survival during the immune response.
doi:10.1083/jcb.200707166
PMCID: PMC2373495  PMID: 18166652
3.  Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins 
The Journal of Cell Biology  2004;164(5):667-675.
In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. One of these mechanisms is the sorting of polyubiquitinated proteins in large cytosolic aggregates called dendritic cell aggresome-like induced structures (DALIS). DALIS formation and maintenance are tightly linked to protein synthesis. Here, we took advantage of an antibody recognizing the antibiotic puromycin to follow the fate of improperly translated proteins, also called defective ribosomal products (DRiPs). We demonstrate that DRiPs are rapidly stored and protected from degradation in DALIS. In addition, we show that DALIS contain the ubiquitin-activating enzyme E1, the ubiquitin-conjugating enzyme E225K, and the COOH terminus of Hsp70-interacting protein ubiquitin ligase. The accumulation of these enzymes in the central area of DALIS defines specific functional sites where initial DRiP incorporation and ubiquitination occur. Therefore, DCs are able to regulate DRiP degradation in response to pathogen-associated motifs, a capacity likely to be important for their immune functions.
doi:10.1083/jcb.200312073
PMCID: PMC2172164  PMID: 14981091
DRiPs; DALIS; puromycin; dendritic cells; antigen processing

Results 1-3 (3)