PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells 
Cancer Biology & Therapy  2013;14(11):1039-1049.
In the present study we show that histone deacetylase inhibitors (HDACIs) enhance the anti-tumor effects of melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) in human renal carcinoma cells. Similar data were obtained in other GU tumor cells. Combination of these two agents resulted in increased autophagy that was dependent on expression of ceramide synthase 6, with HDACIs enhancing MDA-7/IL-24 toxicity by increasing generation of ROS and Ca2+. Knock down of CD95 protected cells from HDACI and MDA-7/IL-24 lethality. Sorafenib treatment further enhanced (HDACI + MDA-7/IL-24) lethality. Anoikis resistant renal carcinoma cells were more sensitive to MDA-7/IL-24 that correlated with elevated SRC activity and tyrosine phosphorylation of CD95. We employed a recently constructed serotype 5/3 adenovirus, which is more effective than a serotype 5 virus in delivering mda-7/IL-24 to renal carcinoma cells and which conditionally replicates (CR) in tumor cells expressing MDA-7/IL-24 by virtue of placing the adenoviral E1A gene under the control of the cancer-specific promoter progression elevated gene-3 (Ad.5/3-PEG-E1A-mda-7; CRAd.5/3-mda-7, Ad.5/3-CTV), to define efficacy in renal carcinoma cells. Ad.5/3-CTV decreased the growth of renal carcinoma tumors to a significantly greater extent than did a non-replicative virus Ad.5/3-mda-7. In contralateral uninfected renal carcinoma tumors Ad.5/3-CTV also decreased the growth of tumors to a greater extent than did Ad.5/3-mda-7. In summation, our data demonstrates that HDACIs enhance MDA-7/IL-24-mediated toxicity and tumor specific adenoviral delivery and viral replication of mda-7/IL-24 is an effective pre-clinical renal carcinoma therapeutic.
doi:10.4161/cbt.26110
PMCID: PMC3925659  PMID: 24025359
MDA-7/IL-24; HDACI; ceramide; apoptosis; bystander; cytokine; ROS; caspase; animal study
2.  OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins 
Cancer biology & therapy  2010;9(7):526-536.
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
PMCID: PMC2888700  PMID: 20107314
ROS; caspase; ER stress; CD95; cell death
3.  The development of MDA-7/IL-24 as a cancer therapeutic 
Pharmacology & therapeutics  2010;128(2):375-384.
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1016/j.pharmthera.2010.08.001
PMCID: PMC2947573  PMID: 20732354
MDA-7; IL-24; Apoptosis; Autophagy; Ceramide; ROS; Ca2+; Clinical trial; Signal transduction; PERK; ER stress; MCL-1
4.  Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells 
Molecular cancer therapeutics  2008;7(2):297-313.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R–like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK−/− cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B–dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methylade-nine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
doi:10.1158/1535-7163.MCT-07-2166
PMCID: PMC3204355  PMID: 18281515
5.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
6.  MDA-7/IL-24 as a cancer therapeutic: from bench to bedside 
Anti-cancer drugs  2010;21(8):725-731.
The novel cytokine melanoma differentiation associated gene-7 (mda-7) was identified by subtractive hybridization in the mid-1990s as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, has now been classified as a member of the expanding interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and ultimately cell death. In addition, MDA-7/IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, which strongly argues that MDA-7/IL-24 may have significant therapeutic value. This review describes what is known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1097/CAD.0b013e32833cfbe1
PMCID: PMC2915543  PMID: 20613485
MDA-7: melanoma differentiation associated gene 7
7.  MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism 
Molecular cancer therapeutics  2009;8(5):1280-1291.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
doi:10.1158/1535-7163.MCT-09-0073
PMCID: PMC2889018  PMID: 19417161
8.  PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells 
Autophagy  2008;4(4):513-515.
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The studies by further defines the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that were dependent on activation of JNK1-3 with subsequent activation of BAX and the induction of mitochondrial dysfunction. Activation of JNK1-3 was dependent upon protein kinase R-like endoplasmic reticulum kinase (PERK) and GST-MDA-7 lethality was suppressed in PERK-/- cells. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or of BiP/GRP78, or by knockdown of ATG5 or Beclin 1 expression, but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin 1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data demonstrate that GST-MDA-7 induces an ER stress response that, via the induction of autophagy, is causal in the activation of pro-apoptotic pathways that converge on the mitochondrion and ultimately culminate in decreased glioma cell survival.
PMCID: PMC2674579  PMID: 18299661
autophagy; caspase; ER stress; cell death

Results 1-8 (8)