PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A Multi-institutional Phase II study of the efficacy and tolerability of Lapatinib in patients with advanced hepatocellular carcinomas 
Background
Hepatocellular carcinoma (HCC) is on the rise worldwide. HCC responds poorly to chemotherapy. Lapatinib is an inhibitor of EGFR and HER2/NEU both implicated in hepatocarcinogenesis. This trial was designed to determine the safety and efficacy of lapatinib in HCC.
Methods
A Fleming phase II design with a single stage of 25 patients with a 90% power to exclude a true response rate of < 10% and detect a true response rate of ≥30% was utilized. The dose of lapatinib was 1,500 mg/d administered orally in 28-day cycles. Tumor and blood specimens were analyzed for expression of HER2/NEU/CEP17 and status of downstream signal pathway proteins.
Results
Twenty-six patients with HCC enrolled on this study. 19% had one prior therapy. Most common toxicities were diarrhea (73%), nausea (54%) and rash (42%). No objective responses were observed. Ten (40%) patients had stable disease (SD) as their best response including 6 (23%) with SD lasting > 120 days. Median progression-free-survival was 1.9 months and median overall survival 12.6 months. Patients who developed a rash had a borderline statistically significant longer survival. Tissue and blood specimens were available on >90% of patients. No somatic mutations in EGFR (exons 18–21) were found. In contrast to our previous findings, we did not find evidence of HER2/NEU somatic mutations. PTEN, P-AKT and P70S6K expression did not correlate with survival.
Conclusions
Lapatinib is well-tolerated but appears to benefit only a subgroup of patients for whom predictive molecular or clinical characteristics are not yet fully defined.
doi:10.1158/1078-0432.CCR-09-0465
PMCID: PMC2774354  PMID: 19737952
2.  Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans 
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.
doi:10.1523/JNEUROSCI.3609-09.2009
PMCID: PMC2834475  PMID: 19940176
amygdala; DRD2; dopamine; emotion; fMRI; prefrontal cortex
3.  Financial and Psychological Risk Attitudes Associated with Two Single Nucleotide Polymorphisms in the Nicotine Receptor (CHRNA4) Gene 
PLoS ONE  2009;4(8):e6704.
With recent advances in understanding of the neuroscience of risk taking, attention is now turning to genetic factors that may contribute to individual heterogeneity in risk attitudes. In this paper we test for genetic associations with risk attitude measures derived from both the psychology and economics literature. To develop a long-term prospective study, we first evaluate both types of risk attitudes and find that the economic and psychological measures are poorly correlated, suggesting that different genetic factors may underlie human response to risk faced in different behavioral domains. We then examine polymorphisms in a spectrum of candidate genes that affect neurotransmitter systems influencing dopamine regulation or are thought to be associated with risk attitudes or impulsive disorders. Analysis of the genotyping data identified two single nucleotide polymorphisms (SNPs) in the gene encoding the alpha 4 nicotine receptor (CHRNA4, rs4603829 and rs4522666) that are significantly associated with harm avoidance, a risk attitude measurement drawn from the psychology literature. Novelty seeking, another risk attitude measure from the psychology literature, is associated with several COMT (catechol-O-methyl transferase) SNPs while economic risk attitude measures are associated with several VMAT2 (vesicular monoamine transporter) SNPs, but the significance of these associations did not withstand statistical adjustment for multiple testing and requires larger cohorts. These exploratory results provide a starting point for understanding the genetic basis of risk attitudes by considering the range of methods available for measuring risk attitudes and by searching beyond the traditional direct focus on dopamine and serotonin receptor and transporter genes.
doi:10.1371/journal.pone.0006704
PMCID: PMC2724734  PMID: 19693267
4.  Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans 
Dopamine modulation of neuronal activity during memory tasks identifies a non-linear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D2 receptors (encoded by DRD2) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D2 proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD2 polymorphism (rs1076560) causing reduced presynaptic D2 receptor expression and the DAT 3’-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing BOLD - fMRI during memory tasks and structural MRI. Results indicated a significant DRD2/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD2 allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a non-linear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D2 knock-out animals (D2R−/−) indicate that DAT and D2 proteins interact in vivo. Taken together, our results demonstrate that the interaction between genetic variants in DRD2 and DAT critically modulates the non-linear relationship between dopamine and neuronal activity during memory processing.
doi:10.1523/JNEUROSCI.4858-08.2009
PMCID: PMC2686116  PMID: 19176830
working memory; Recognition Memory; FMRI; Dopamine; Transport; D2; Receptor

Results 1-4 (4)