PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Nicotinic α5 receptor subunit mRNA expression is associated with distant 5′ upstream polymorphisms 
CHRNA5, encoding the nicotinic α5 subunit, is implicated in multiple disorders, including nicotine addiction and lung cancer. Previous studies demonstrate significant associations between promoter polymorphisms and CHRNA5 mRNA expression, but the responsible sequence variants remain uncertain. To search for cis-regulatory variants, we measured allele-specific mRNA expression of CHRNA5 in human prefrontal cortex autopsy tissues and scanned the CHRNA5 locus for regulatory variants. A cluster of six frequent single nucleotide polymorphisms (rs1979905, rs1979906, rs1979907, rs880395, rs905740, and rs7164030), in complete linkage disequilibrium, fully account for a >2.5-fold allelic expression difference and a fourfold increase in overall CHRNA5 mRNA expression. This proposed enhancer region resides more than 13 kilobases upstream of the CHRNA5 transcription start site. The same upstream variants failed to affect CHRNA5 mRNA expression in peripheral blood lymphocytes, indicating tissue-specific gene regulation. Other promoter polymorphisms were also correlated with overall CHRNA5 mRNA expression in the brain, but were inconsistent with allelic mRNA expression ratios, a robust and proximate measure of cis-regulatory variants. The enhancer region and the nonsynonymous polymorphism rs16969968 generate three main haplotypes that alter the risk of developing nicotine dependence. Ethnic differences in linkage disequilibrium across the CHRNA5 locus require consideration of the upstream enhancer variants when testing clinical associations.
doi:10.1038/ejhg.2010.120
PMCID: PMC2995013  PMID: 20700147
Nicotinic receptor; alpha5 subunit; gene expression; nicotine dependence; lung cancer; enhancer
2.  Nicotinic α5 receptor subunit mRNA expression is associated with distant 5′ upstream polymorphisms 
CHRNA5, encoding the nicotinic α5 subunit, is implicated in multiple disorders, including nicotine addiction and lung cancer. Previous studies demonstrate significant associations between promoter polymorphisms and CHRNA5 mRNA expression, but the responsible sequence variants remain uncertain. To search for cis-regulatory variants, we measured allele-specific mRNA expression of CHRNA5 in human prefrontal cortex autopsy tissues and scanned the CHRNA5 locus for regulatory variants. A cluster of six frequent single-nucleotide polymorphisms (rs1979905, rs1979906, rs1979907, rs880395, rs905740, and rs7164030), in complete linkage disequilibrium (LD), fully account for a >2.5-fold allelic expression difference and a fourfold increase in overall CHRNA5 mRNA expression. This proposed enhancer region resides more than 13 kilobases upstream of the CHRNA5 transcription start site. The same upstream variants failed to affect CHRNA5 mRNA expression in peripheral blood lymphocytes, indicating tissue-specific gene regulation. Other promoter polymorphisms were also correlated with overall CHRNA5 mRNA expression in the brain, but were inconsistent with allelic mRNA expression ratios, a robust and proximate measure of cis-regulatory variants. The enhancer region and the nonsynonymous polymorphism rs16969968 generate three main haplotypes that alter the risk of developing nicotine dependence. Ethnic differences in LD across the CHRNA5 locus require consideration of upstream enhancer variants when testing clinical associations.
doi:10.1038/ejhg.2010.120
PMCID: PMC2995013  PMID: 20700147
nicotinic receptor; α5 subunit; gene expression; nicotine dependence; lung cancer; enhancer
3.  Allelic mRNA expression of sortilin-1 (SORL1) mRNA in Alzheimer’s autopsy brain tissues 
Neuroscience letters  2008;448(1):120-124.
Polymorphisms in the gene encoding SORL1, involved in cellular trafficking of APP, have been implicated in late-onset Alzheimer’s disease, by a mechanism thought to affect mRNA expression. To search for regulatory polymorphisms, we have measured allele-specific mRNA expression of SORL1 in human autopsy tissues from the prefrontal cortex of 26 Alzheimer’s patients, and 51 controls, using two synonymous marker SNPs (rs3824968 in exon 34 (11 heterozygous AD subjects and 16 controls), and rs12364988 in exon 6 (8 heterozygous AD subjects)). Significant allelic expression imbalance (AEI), indicative of the presence of cis-acting regulatory factors, was detected in a single control subject, while allelic ratios were near unity for all other subjects. We genotyped 7 SNPs in two haplotype blocks that had previously been implicated in Alzheimer’s disease. Since each of these SNPs was heterozygous in several subjects lacking AEI, this study fails to support a regulatory role for SORL1 polymorphisms in mRNA expression.
doi:10.1016/j.neulet.2008.10.034
PMCID: PMC2612539  PMID: 18938222
Alzheimer’s disease; SORL1; Allelic expression imbalance

Results 1-3 (3)