PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
author:("amavatha, S")
1.  Associations of Tobacco Use and Alcohol Drinking with Laryngeal and Hypopharyngeal Cancer Risks among Men in Karunagappally, Kerala, India -Karunagappally Cohort Study 
PLoS ONE  2013;8(8):e73716.
Background
From among a cohort of 65,553 men aged 30–84 in Karunagappally Taluk, Kerala, India, 52 hypopharyngeal cancer cases and 85 laryngeal cancer cases were identified by the Karunagappally Cancer Registry during the period between 1990 and 2009.
Methods
We conduct Poisson regression analysis of grouped data, taking into account age and education.
Results
This study showed that the incidence rates of cancers of the hypopharynx and the larynx were strongly related to the number of bidis smoked a day (P<0.001 for both hypopharyngeal and laryngeal cancers) and duration of bidi smoking (P=0.009; P<0.001). Laryngeal cancer risk was significantly increased by bidi smoking (P<0.001), cigarette smoking (P=0.013) and regular alcohol use (P=0.005).
Conclusion
The present study, the first cohort study to examine the association of hypopharyngeal and laryngeal cancer incidence rates with bidi smoking in South Asia, clearly showed dose–response relationships between those cancer risks and bidi smoking; larger amounts of bidi smoked a day and longer durations of bidi smoking increased the incidence rates of those cancers. Tobacco chewing was found not related to the risk of hypopharynx or larynx cancer.
doi:10.1371/journal.pone.0073716
PMCID: PMC3756048  PMID: 24015309
2.  Discovering Networks of Perturbed Biological Processes in Hepatocyte Cultures 
PLoS ONE  2011;6(1):e15247.
The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs) and collagen sandwiches (CS). Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs). CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior.
doi:10.1371/journal.pone.0015247
PMCID: PMC3016309  PMID: 21245926
3.  3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes 
PLoS ONE  2010;5(11):e15456.
Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro.
doi:10.1371/journal.pone.0015456
PMCID: PMC2980491  PMID: 21103392

Results 1-3 (3)