PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
author:("padmanabha, S")
1.  Polyelectrolyte Multilayers in Tissue Engineering 
The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation.
doi:10.1089/ten.teb.2010.0548
PMCID: PMC3062467  PMID: 21210759
2.  Engineered Three-Dimensional Liver Mimics Recapitulate Critical Rat-Specific Bile Acid Pathways 
Tissue Engineering. Part A  2010;17(5-6):677-689.
A critical hepatic function is the maintenance of optimal bile acid (BA) compositions to achieve cholesterol homeostasis. BAs are rarely quantified to assess hepatic phenotype in vitro since existing analytical techniques have inadequate resolution. We report a detailed investigation into the biosynthesis and homeostasis of eight primary rat BAs in conventional in vitro hepatocyte cultures and in an engineered liver mimic. The three-dimensional (3D) liver mimic was assembled with layers of primary rat hepatocytes and liver sinusoidal endothelial cells. A high-pressure liquid chromatography and mass spectrometry technique was developed with a detection limit of 1 ng/mL for each BA, which is significantly lower than previous approaches. Over a 2-week culture, only 3D liver mimics exhibited the ratio of conjugated cholic acid to chenodeoxycholic acid that has been observed in vivo. This ratio, an important marker of BA homeostasis, was significantly higher in stable collagen sandwich cultures indicating significant deviation from physiological behavior. The biosynthesis of tauro-β-muricholic acid, a key primary rat BA, doubled only in the engineered liver mimics while decreasing in the other systems. These trends demonstrate that the 3D liver mimics provide a unique platform to study hepatic metabolism.
doi:10.1089/ten.tea.2010.0423
PMCID: PMC3043955  PMID: 20929286

Results 1-2 (2)