PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Osbpl8 Deficiency in Mouse Causes an Elevation of High-Density Lipoproteins and Gender-Specific Alterations of Lipid Metabolism 
PLoS ONE  2013;8(3):e58856.
OSBP-related protein 8 (ORP8) encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8−/− (KO) C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL) cholesterol (+79%) and phospholipids (+35%), while only minor increase of apolipoprotein A-I (apoA-I) was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27%) was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT) or hepatic lipase (HL) activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP) activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL) activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model, demonstrating a HDL elevating effect of Osbpl8 knock-out and additional gender- and/or diet-dependent impacts on lipid metabolism.
doi:10.1371/journal.pone.0058856
PMCID: PMC3598917  PMID: 23554939
2.  Oxysterols and Their Cellular Effectors 
Biomolecules  2012;2(1):76-103.
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
doi:10.3390/biom2010076
PMCID: PMC4030866  PMID: 24970128
cell signaling; EBI2; Insig; lipid metabolism; LXR; OSBP; oxysterol; oxysterol-binding protein; oxysterol receptor; ROR
3.  OSBP-Related Protein 8 (ORP8) Regulates Plasma and Liver Tissue Lipid Levels and Interacts with the Nucleoporin Nup62 
PLoS ONE  2011;6(6):e21078.
We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum oxysterol-binding protein implicated in cellular lipid homeostasis. We now investigated its action in hepatic cells in vivo and in vitro. Adenoviral overexpression of ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum (−34%, −26%, −37%, respectively) and liver tissue (−40%, −12%, −24%), coinciding with reduction of nuclear (n)SREBP-1 and -2 and mRNA levels of their target genes. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing by RNA interference moderately suppressed or induced the expression of SREBP-1 and SREBP-2 target genes, respectively. In accordance, cholesterol biosynthesis was reduced by ORP8 overexpression and enhanced by ORP8 silencing in [3H]acetate pulse-labeling experiments. ORP8, previously shown to bind 25-hydroxycholesterol, was now shown to bind also cholesterol in vitro. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation analyses revealed the nuclear pore component Nup62 as an interaction partner of ORP8. Co-localization of ORP8 and Nup62 at the nuclear envelope was demonstrated by BiFC and confocal immunofluorescence microscopy. Furthermore, the impact of overexpressed ORP8 on nSREBPs and their target mRNAs was inhibited in cells depleted of Nup62. Our results reveal that ORP8 has the capacity to modulate lipid homeostasis and SREBP activity, probably through an indirect mechanism, and provide clues of an entirely new mode of ORP action.
doi:10.1371/journal.pone.0021078
PMCID: PMC3115989  PMID: 21698267

Results 1-3 (3)