PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In vivo hypoxic preconditioning protects from warm liver ischemic/reperfusion injury through the adenosine A2B receptor 
Transplantation  2012;94(9):894-902.
BACKGROUND
Liver ischemia(I)/reperfusion(R) injury(I) is a known risk factor for the postoperative outcome of patients undergoing liver surgery/transplantation. Attempts to protect from organ damage require multidisciplinary strategies and are of emerging interest in view of patients with higher age and ASA-status. Ischemic preconditioning has been successfully applied to prevent from IRI during liver resections/transplantation. Since even short periods of ischemia during preconditioning inevitably lead to hypoxia and formation of anti-inflammatory/ cytoprotective acting adenosine, we reasoned that short non-ischemic hypoxia also protects against hepatic IRI.
METHODS
Mice underwent hypoxic preconditioning(HPC) by breathing 10%-oxygen for 10 minutes, followed by 10 minutes of 21%-oxygen prior to left-liver-lobe-ischemia(45 min) and reperfusion(4 hrs). The interactions of hypoxia->adenosine->adenosine-receptors were tested by pharmacologic antagonism at adenosine receptor(AR) sites in wild type mice and in mice with genetic deletions at the A1-;A2A-;A2B- and A3-ARs. Hepatocellular damage, inflammation and metabolic effects were quantified by enzyme activities, cytokines, liver-myeloperoxidase(MPO), blood adenosine and tissue-adenosinemonophosphate(AMP), respectively.
RESULTS
Hepatoprotection by HPC was significant in wild type and A1-, A2A-and A3 AR-knock-out mice as quantified by lower ALT serum activities, cytokine levels, histological damage-scores, tissue-myeloperoxidase-concentrations and as well as preserved AMP-concentrations. Protection by HPC was blunted in mice pretreated with the A2B-AR-antagonist MRS1754 or in A2B-AR“knock-outs”.
CONCLUSION
Because liver protective effects of HPC are negated when the A2B receptor is non-functional, the "hypoxia->adenosine->A2B receptor" pathway plays a critical role in the prevention of warm ischemia reperfusion injury in vivo. Hypoxic activation of this pathway warrants use of selective A2B-AR-agonists or even intermittent hypoxia (e.g. in deceased organ donors) to protect from liver ischemia/reperfusion injury.
doi:10.1097/TP.0b013e31826a9a46
PMCID: PMC3491139  PMID: 23073466
hypoxia; murine liver ischemia; preconditioning; hepatoprotection
2.  Critical Role of Hypoxia and A2A Adenosine Receptors in Liver Tissue-Protecting Physiological Anti-Inflammatory Pathway 
Molecular Medicine  2007;14(3-4):116-123.
Whole body exposure of wild type control littermates and A2A adenosine receptor (A2AR) gene deleted mice to low oxygen containing inspired gas mixture allowed the investigation of the mechanism that controls inflammatory liver damage and protects the liver using a mouse model of T cell-mediated viral and autoimmune hepatitis. We tested the hypothesis that the inflammatory tissue damage-associated hypoxia and extracellular adenosine → A2AR signaling plays an important role in the physiological anti-inflammatory mechanism that limits liver damage during fulminant hepatitis. After induction of T cell-mediated hepatitis, mice were kept in modular chambers either under normoxic (21% oxygen) or hypoxic (10% oxygen) conditions for 8 h. It was shown that the whole body exposure to hypoxic atmosphere caused tissue hypoxia in healthy animals as evidenced by a decrease in the arterial blood oxygen tension and increase of the plasma adenosine concentration (P < 0.05). This “hypoxic” treatment resulted in significantly reduced hepatocellular damage and attenuated levels of serum cytokines in mice with acute liver inflammation. The anti-inflammatory effects of hypoxia were not observed in the absence of A2AR in studies of A2AR gene-deficient mice or when A2AR have been pharmacologically antagonized with synthetic antagonist. The presented data demonstrate that total body hypoxia-triggered pathway provides protection in acute hepatitis and that hypoxia (upstream) and A2AR (downstream) function in the same immunosuppressive and liver tissue-protecting pathway.
doi:10.2119/2007-00075.Chouker
PMCID: PMC2156187  PMID: 18163162
3.  Targeted Deletion of HIF-1α Gene in T Cells Prevents their Inhibition in Hypoxic Inflamed Tissues and Improves Septic Mice Survival 
PLoS ONE  2007;2(9):e853.
Background
Sepsis patients may die either from an overwhelming systemic immune response and/or from an immunoparalysis-associated lack of anti-bacterial immune defence. We hypothesized that bacterial superantigen-activated T cells may be prevented from contribution into anti-bacterial response due to the inhibition of their effector functions by the hypoxia inducible transcription factor (HIF-1α) in inflamed and hypoxic areas.
Methodology/Principal Findings
Using the Cre-lox-P-system we generated mice with a T–cell targeted deletion of the HIF-1α gene and analysed them in an in vivo model of bacterial sepsis. We show that deletion of the HIF-1α gene leads to higher levels of pro-inflammatory cytokines, stronger anti-bacterial effects and much better survival of mice. These effects can be at least partially explained by significantly increased NF-κB activation in TCR activated HIF-1 α deficient T cells.
Conclusions/Significance
T cells can be recruited to powerfully contribute to anti-bacterial response if they are relieved from inhibition by HIF-1α in inflamed and hypoxic areas. Our experiments uncovered the before unappreciated reserve of anti-bacterial capacity of T cells and suggest novel therapeutic anti-pathogen strategies based on targeted deletion or inhibition of HIF-1 α in T cells.
doi:10.1371/journal.pone.0000853
PMCID: PMC1959117  PMID: 17786224
4.  Oxygenation Inhibits the Physiological Tissue-Protecting Mechanism and Thereby Exacerbates Acute Inflammatory Lung Injury 
PLoS Biology  2005;3(6):e174.
Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure.
A mouse model suggests that oxygen therapy may exacerbate lung injury by weakening the anti-inflammatory mechanisms driven by hypoxia.
doi:10.1371/journal.pbio.0030174
PMCID: PMC1088279  PMID: 15857155

Results 1-4 (4)