PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought 
Trees (Berlin, Germany : West)  2010;24(5):887-898.
Within a dry inner Alpine valley in the Eastern Central Alps (750 m a.s.l., Tyrol, Austria) the influence of climate variables (precipitation, air humidity, temperature) and soil water content on intra-annual dynamics of tree-ring development was determined in Scots pine (Pinus sylvestris L.) at two sites differing in soil water availability (xeric and dry-mesic site). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree rings of mature trees. Daily and seasonal fluctuations of the stem radius, which reached almost half of total annual increment, primarily reflected changes in tree water status and masked radial stem growth especially during drought periods in spring. However, temporal dynamics of intra-annual radial growth determined by both methods were found to be quite similar, when onset of radial growth in dendrometer traces was defined by the occurrence of first enlarging xylem cells. Radial increments during the growing period, which lasted from early April through early August showed statistically significant relationships with precipitation (Kendall τ = 0.234, p < 0.01, and τ = 0.184, p < 0.05, at the xeric and dry-mesic site, respectively) and relative air humidity (Pearson r = 0.290, p < 0.05, and r = 0.306, p < 0.05 at the xeric and dry-mesic site, respectively). Soil water content and air temperature had no influence on radial stem increment. Culmination of radial stem growth was detected at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that the early decrease in radial growth rate is due to a high belowground demand for carbohydrates to ensure adequate resource acquisition on the drought prone substrate.
doi:10.1007/s00468-010-0458-1
PMCID: PMC3191526  PMID: 22003269
Dendrometer; Drought; Dry inner Alpine valley; Pinus sylvestris; Radial growth; Xylem cell analysis
2.  Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps 
Annals of forest science  2010;67(2):201.
Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.
We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.
In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.
Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.
doi:10.1051/forest/2009094
PMCID: PMC3047779  PMID: 21379394
net photosynthesis; temperature; cembran pine; timberline ecotone; global warming
3.  Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris 
Tree physiology  2010;30(4):490-501.
Summary
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site).
In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05).
Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
doi:10.1093/treephys/tpq003
PMCID: PMC3046340  PMID: 20197285
Cambium; dry inner Alpine valley; intra-annual growth; Scots pine; tracheid production; xylogenesis

Results 1-3 (3)