PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
1.  Recombinant bacteriophage lysins as antibacterials 
Bioengineered Bugs  2010;1(1):9-16.
With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential.
doi:10.4161/bbug.1.1.9818
PMCID: PMC3035150  PMID: 21327123
lysin; endolysin; bacteriophage; pathogen; antibacterial; infection; lytic; enzyme
2.  The truncated phage lysin CHAPk eliminates Staphylococcus aureus in the nares of mice 
Bioengineered Bugs  2010;1(6):404-407.
The endolysin LysK derived from staphylococcal phage K has previously been shown to have two enzymatic domains, one of which is an N-acetylmuramoyl-L-alanine amidase and the other a cysteine/histidine-dependant amidohydrolase/peptidase designated CHAPk. The latter, when cloned as a single-domain truncated enzyme, is conveniently overexpressed in a highly-soluble form. This enzyme was shown to be highly active in vitro against live cell suspensions of S. aureus. In the current study, the IVIS imaging system was used to demonstrate the effective elimination of a lux labeled S. aureus from the nares of BALB/c mice.
doi:10.4161/bbug.1.6.13422
PMCID: PMC3056090  PMID: 21468207
Staphylococcus; decolonization; lysin; bacteriophage; nasal
3.  Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs 
Bioengineered Bugs  2010;1(6):408-412.
Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.
The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.
Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria.
doi:10.4161/bbug.1.6.13642
PMCID: PMC3056091  PMID: 21468208
mycobacteria; nisin variants; alamar blue; peptide engineering; lantibiotic; bacteriocin
4.  Isolation and detection of Mycobacterium avium subsp. paratuberculosis (MAP) from cattle in Ireland using both traditional culture and molecular based methods 
Gut Pathogens  2010;2:11.
Background
Mycobacterium avium subsp. paratuberculosis (MAP) causes a chronic gastroenteritis affecting many species. Johne's disease is one of the most widespread and economically important disease of ruminants. Since 1992 and the opening of the European market, the exposure and the transmission of MAP in cattle herds considerably increased. Improvements in diagnostic strategies for Ireland and elsewhere are urgently required. In total, 290 cattle from seven Irish herds with either a history or a strong likelihood of paratuberculosis infection were selected by a veterinary team over 2 years. Faecal samples (290) were collected and screened for MAP by a conventional culture method and two PCR assays. In order to further evaluate the usefulness of molecular testing, a nested PCR was also assessed.
Results
M. paratuberculosis was isolated and cultured from 23 faecal samples (7.9%) on solid medium. From a molecular perspective, 105 faecal samples (36%) were PCR positive for MAP specific DNA. A complete correlation (100%) was observed between the results of both molecular targets (IS900 and ISMAP02). Sensitivity was increased by ~10% with the inclusion of a nested PCR for ISMAP02 (29 further samples were positive). When culturing and PCR were retrospectively compared, every culture positive faecal sample also yielded a PCR positive result for both targets. Alternatively, however not every PCR positive sample (n = 105, 36%) produced a corresponding culture isolate. Interestingly though when analysed collectively at the herd level, the correlation between culture and PCR results was 100% (ie every herd which recorded at least 1 early PCR +ve result later yielded culture positive samples within that herd).
Conclusion
PCR on bovine faecal samples is a fast reliable test and should be applied routinely when screening for MAP within herds suspected of paratuberculosis. Nested PCR increases the threshold limit of detection for MAP DNA by approximately 10% but proved to be problematic in this study. Although slow and impractical, culturing is still regarded as one of the most reliable methods for detecting MAP among infected cattle.
doi:10.1186/1757-4749-2-11
PMCID: PMC2954866  PMID: 20875096
5.  What's in a Name? Can Mullein Weed Beat TB Where Modern Drugs Are Failing? 
Common mullein weed (Verbascum thapsus) has a large number of synonyms and old local “nick names” which connect the plant with mycobacteria. A strong history of medicinal use has been uncovered for the treatment of tuberculosis, tubercular skin disease, leprosy, and mycobacterial disease in animals. Here, we examine problems encountered in treating such diseases today, the historical and scientific links between mullein and pathogenic bacteria, and the possibility that this common weed could harbour the answer to beating one of the world's biggest infectious killers.
doi:10.1155/2011/239237
PMCID: PMC2952292  PMID: 20953419

Results 1-5 (5)