PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
1.  Bacteriophage-Derived Peptidase CHAPK Eliminates and Prevents Staphylococcal Biofilms 
New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase, CHAPK, as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. Purified CHAPK applied to biofilms of Staphylococcus aureus DPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition, CHAPK was able to prevent biofilm formation by this strain. The CHAPK lysin also reduced S. aureus in a skin decolonization model. Our data demonstrates the potential of CHAPK as a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.
doi:10.1155/2013/625341
PMCID: PMC3574654  PMID: 23431312
2.  In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK 
Bacteriophage  2011;1(4):198-206.
The aim of this study was to use comparative modeling to predict the three-dimensional structure of the CHAPK protein (cysteine, histidine-dependent amidohydrolase/peptidase domain of the LysK endolysin, derived from bacteriophage K). Iterative PSI-BLAST searches against the Protein Data Bank (PDB) and nonredundant (nr) databases were used to populate a multiple alignment for analysis using the T-Coffee Expresso server. A consensus Maximum Parsimony phylogenetic tree with a bootstrap analysis setting of 1,000 replicates was constructed using MEGA4. Structural templates relevant to our target (CHAPK) were identified, processed in Expresso and used to generate a 3D model in the alignment mode of SWISS-MODEL. These templates were also processed in the I-TASSER web server. A Staphylococcus saprophyticus CHAP domain protein, 2K3A, was identified as the structural template in both servers. The I-TASSER server generated the CHAPK model with the best bond geometries when analyzed using PROCHECK and the most logical organization of the structure. The predicted 3D model indicates that CHAPK has a papain-like fold. Circular dichroism spectropolarimetry also indicated that CHAPK has an αβ fold, which is consistent with the model presented. The putative active site maintained a highly conserved Cys54-His117-Glu134 charge relay and an oxyanion hole residue Asn136. The residue triplet, Cys-His-Glu, is known to be a viable proteolytic triad in which we predict the Cys residue is used in a nucleophilic attack on peptide bonds at a specific site in the pentaglycine cross bridge of staphylococcal cell wall peptidoglycan. Use of comparative modeling has allowed approximation of the 3D structure of CHAPK giving information on the structure and an insight into the binding and active site of the catalytic domain. This may facilitate its development as an alternative antibacterial agent.
doi:10.4161/bact.1.4.18245
PMCID: PMC3448105  PMID: 23050213
bacteriophage; CHAP; endolysin; in silico; peptidase; staphylococcus
3.  Recombinant bacteriophage lysins as antibacterials 
Bioengineered Bugs  2010;1(1):9-16.
With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential.
doi:10.4161/bbug.1.1.9818
PMCID: PMC3035150  PMID: 21327123
lysin; endolysin; bacteriophage; pathogen; antibacterial; infection; lytic; enzyme
4.  The truncated phage lysin CHAPk eliminates Staphylococcus aureus in the nares of mice 
Bioengineered Bugs  2010;1(6):404-407.
The endolysin LysK derived from staphylococcal phage K has previously been shown to have two enzymatic domains, one of which is an N-acetylmuramoyl-L-alanine amidase and the other a cysteine/histidine-dependant amidohydrolase/peptidase designated CHAPk. The latter, when cloned as a single-domain truncated enzyme, is conveniently overexpressed in a highly-soluble form. This enzyme was shown to be highly active in vitro against live cell suspensions of S. aureus. In the current study, the IVIS imaging system was used to demonstrate the effective elimination of a lux labeled S. aureus from the nares of BALB/c mice.
doi:10.4161/bbug.1.6.13422
PMCID: PMC3056090  PMID: 21468207
Staphylococcus; decolonization; lysin; bacteriophage; nasal

Results 1-4 (4)