Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects 
To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women.
Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software.
The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia.
The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.
PMCID: PMC3384471  PMID: 22471940
2.  Genetic Association and Interaction Analysis of USF1 and APOA5 on Lipid Levels and Atherosclerosis 
USF1 is a ubiquitous transcription factor governing the expression of numerous genes of lipid and glucose metabolism. APOA5 is a well-established candidate gene regulating triglyceride (TG) levels and has been identified as a downstream target of upstream stimulatory factor. No detailed studies about the effect of APOA5 on atherosclerotic lesion formation have been conducted, nor has its potential interaction with USF1 been examined.
Methods and Results
We analyzed allelic variants of USF1 and APOA5 in families (n=516) ascertained for atherogenic dyslipidemia and in an autopsy series of middle-aged men (n=300) with precise quantitative measurements of atherosclerotic lesions. The impact of previously associated APOA5 variants on TGs was observed in the dyslipidemic families, and variant rs3135506 was associated with size of fibrotic aortic lesions in the autopsy series. The USF1 variant rs2516839, associated previously with atherosclerotic lesions, showed an effect on TGs in members of the dyslipidemic families with documented coronary artery disease. We provide preliminary evidence of gene-gene interaction between these variants in an autopsy series with a fibrotic lesion area in the abdominal aorta (P=0.0028), with TGs in dyslipidemic coronary artery disease subjects (P=0.03), and with high-density lipoprotein cholesterol (P=0.008) in a large population cohort of coronary artery disease patients (n=1065) in which the interaction for TGs was not replicated.
Our findings in these unique samples reinforce the roles of APOA5 and USF1 variants on cardiovascular phenotypes and suggest that both genes contribute to lipid levels and aortic atherosclerosis individually and possibly through epistatic effects.
PMCID: PMC3224996  PMID: 19910639
genes; USF1; APOA5; lipids; atherosclerosis; epistasis
3.  Use of Genome-Wide Expression Data to Mine the “Gray Zone” of GWA Studies Leads to Novel Candidate Obesity Genes 
PLoS Genetics  2010;6(6):e1000976.
To get beyond the “low-hanging fruits” so far identified by genome-wide association (GWA) studies, new methods must be developed in order to discover the numerous remaining genes that estimates of heritability indicate should be contributing to complex human phenotypes, such as obesity. Here we describe a novel integrative method for complex disease gene identification utilizing both genome-wide transcript profiling of adipose tissue samples and consequent analysis of genome-wide association data generated in large SNP scans. We infer causality of genes with obesity by employing a unique set of monozygotic twin pairs discordant for BMI (n = 13 pairs, age 24–28 years, 15.4 kg mean weight difference) and contrast the transcript profiles with those from a larger sample of non-related adult individuals (N = 77). Using this approach, we were able to identify 27 genes with possibly causal roles in determining the degree of human adiposity. Testing for association of SNP variants in these 27 genes in the population samples of the large ENGAGE consortium (N = 21,000) revealed a significant deviation of P-values from the expected (P = 4×10−4). A total of 13 genes contained SNPs nominally associated with BMI. The top finding was blood coagulation factor F13A1 identified as a novel obesity gene also replicated in a second GWA set of ∼2,000 individuals. This study presents a new approach to utilizing gene expression studies for informing choice of candidate genes for complex human phenotypes, such as obesity.
Author Summary
Obesity has a strong genetic component and an estimated 45%–85% of the variation in adult relative weight is genetically determined. Many genes have recently been identified in genome-wide association studies. The individual effects of the identified genes, however, have been very modest, and their identification required very large sample sizes. New approaches are therefore needed to uncover further genetic variants that contribute to the development of obesity and related conditions. Much can be learned from studying the expression of genes in adipose tissue of obese and non-obese subjects, but it is very difficult to distinguish which genes' expression differences represent reactions to obesity from those related to causal processes. We studied monozygotic twin pairs discordant for obesity and contrasted the gene expression profiles of obese and lean co-twins (controlling for genetic variation) to those from unrelated individuals to try to discern the cause-and-effect relationships of the identified changes in gene expression in fat. Testing the identified genes in 21,000 individuals identified numerous new genes with possible roles in the development of obesity. Among the top findings was a gene involved in blood coagulation (Factor XIIIA1), possibly linking obesity with known complications including deep vein thrombosis, heart attack, and stroke.
PMCID: PMC2880558  PMID: 20532202

Results 1-3 (3)