PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity▿ 
Applied and Environmental Microbiology  2011;77(11):3830-3837.
The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contributed to a decrease in the efficacy of prothioconazole and epoxiconazole, the two currently most effective azole fungicides against M. graminicola. In this study, we establish which amino acid alterations in novel MgCYP51 variants have the greatest impact on azole sensitivity and protein function. We introduced individual and combinations of identified alterations by site-directed mutagenesis and functionally determined their impact on azole sensitivity by expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a regulatable promoter controlling native CYP51 expression. We demonstrate that substitution S524T confers decreased sensitivity to all azoles when introduced alone or in combination with Y461S. In addition, S524T restores the function in S. cerevisiae of MgCYP51 variants carrying the otherwise lethal alterations Y137F and V136A. Sensitivity tests of S. cerevisiae transformants expressing recently emerged MgCYP51 variants carrying combinations of alterations D134G, V136A, Y461S, and S524T reveal a substantial impact on sensitivity to the currently most widely used azoles, including epoxiconazole and prothioconazole. Finally, we exploit a recently developed model of the MgCYP51 protein to predict that the substantial structural changes caused by these novel combinations reduce azole interactions with critical residues in the binding cavity, thereby causing resistance.
doi:10.1128/AEM.00027-11
PMCID: PMC3127603  PMID: 21478305
2.  Molecular Modelling of the Emergence of Azole Resistance in Mycosphaerella graminicola 
PLoS ONE  2011;6(6):e20973.
A structural rationale for recent emergence of azole (imidazole and triazole) resistance associated with CYP51 mutations in the wheat pathogen Mycosphaerella graminicola is presented, attained by homology modelling of the wild type protein and 13 variant proteins. The novel molecular models of M. graminicola CYP51 are based on multiple homologues, individually identified for each variant, rather than using a single structural scaffold, providing a robust structure-function rationale for the binding of azoles, including important fungal specific regions for which no structural information is available. The wild type binding pocket reveals specific residues in close proximity to the bound azole molecules that are subject to alteration in the variants. This implicates azole ligands as important agents exerting selection on specific regions bordering the pocket, that become the focus of genetic mutation events, leading to reduced sensitivity to that group of related compounds. Collectively, the models account for several observed functional effects of specific alterations, including loss of triadimenol sensitivity in the Y137F variant, lower sensitivity to tebuconazole of I381V variants and increased resistance to prochloraz of V136A variants. Deletion of Y459 and G460, which brings about removal of that entire section of beta turn from the vicinity of the binding pocket, confers resistance to tebuconazole and epoxiconazole, but sensitivity to prochloraz in variants carrying a combination of A379G I381V ΔY459/G460. Measurements of binding pocket volume proved useful in assessment of scope for general resistance to azoles by virtue of their accommodation without bonding interaction, particularly when combined with analysis of change in positions of key amino acids. It is possible to predict the likely binding orientation of an azole molecule in any of the variant CYPs, providing potential for an in silico screening system and reliable predictive approach to assess the probability of particular variants exhibiting resistance to particular azole fungicides.
doi:10.1371/journal.pone.0020973
PMCID: PMC3124474  PMID: 21738598

Results 1-2 (2)