PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The genetic basis of undiagnosed muscular dystrophies and myopathies 
Neurology  2016;87(1):71-76.
Objective:
To apply next-generation sequencing (NGS) for the investigation of the genetic basis of undiagnosed muscular dystrophies and myopathies in a very large cohort of patients.
Methods:
We applied an NGS-based platform named MotorPlex to our diagnostic workflow to test muscle disease genes with a high sensitivity and specificity for small DNA variants. We analyzed 504 undiagnosed patients mostly referred as being affected by limb-girdle muscular dystrophy or congenital myopathy.
Results:
MotorPlex provided a complete molecular diagnosis in 218 cases (43.3%). A further 160 patients (31.7%) showed as yet unproven candidate variants. Pathogenic variants were found in 47 of 93 genes, and in more than 30% of cases, the phenotype was nonconventional, broadening the spectrum of disease presentation in at least 10 genes.
Conclusions:
Our large DNA study of patients with undiagnosed myopathy is an example of the ongoing revolution in molecular diagnostics, highlighting the advantages in using NGS as a first-tier approach for heterogeneous genetic conditions.
doi:10.1212/WNL.0000000000002800
PMCID: PMC4932234  PMID: 27281536
2.  A novel clinical tool to classify facioscapulohumeral muscular dystrophy phenotypes 
Journal of Neurology  2016;263:1204-1214.
Based on the 7-year experience of the Italian Clinical Network for FSHD, we revised the FSHD clinical form to describe, in a harmonized manner, the phenotypic spectrum observed in FSHD. The new Comprehensive Clinical Evaluation Form (CCEF) defines various clinical categories by the combination of different features. The inter-rater reproducibility of the CCEF was assessed between two examiners using kappa statistics by evaluating 56 subjects carrying the molecular marker used for FSHD diagnosis. The CCEF classifies: (1) subjects presenting facial and scapular girdle muscle weakness typical of FSHD (category A, subcategories A1–A3), (2) subjects with muscle weakness limited to scapular girdle or facial muscles (category B subcategories B1, B2), (3) asymptomatic/healthy subjects (category C, subcategories C1, C2), (4) subjects with myopathic phenotype presenting clinical features not consistent with FSHD canonical phenotype (D, subcategories D1, D2). The inter-rater reliability study showed an excellent concordance of the final four CCEF categories with a κ equal to 0.90; 95 % CI (0.71; 0.97). Absolute agreement was observed for categories C and D, an excellent agreement for categories A [κ = 0.88; 95 % CI (0.75; 1.00)], and a good agreement for categories B [κ = 0.79; 95 % CI (0.57; 1.00)]. The CCEF supports the harmonized phenotypic classification of patients and families. The categories outlined by the CCEF may assist diagnosis, genetic counseling and natural history studies. Furthermore, the CCEF categories could support selection of patients in randomized clinical trials. This precise categorization might also promote the search of genetic factor(s) contributing to the phenotypic spectrum of disease.
Electronic supplementary material
The online version of this article (doi:10.1007/s00415-016-8123-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00415-016-8123-2
PMCID: PMC4893383  PMID: 27126453
FSHD; Clinical phenotype; Diagnostic criteria; Disease registry; Disease classification
3.  Clinical expression of facioscapulohumeral muscular dystrophy in carriers of 1–3 D4Z4 reduced alleles: experience of the FSHD Italian National Registry 
BMJ Open  2016;6(1):e007798.
Objectives
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) has been genetically linked to reduced numbers (≤8) of D4Z4 repeats at 4q35. Particularly severe FSHD cases, characterised by an infantile onset and presence of additional extra-muscular features, have been associated with the shortest D4Z4 reduced alleles with 1–3 repeats (1–3 DRA). We searched for signs of perinatal onset and evaluated disease outcome through the systematic collection of clinical and anamnestic records of de novo and familial index cases and their relatives, carrying 1–3 DRA.
Setting
Italy.
Participants
66 index cases and 33 relatives carrying 1–3 DRA.
Outcomes
The clinical examination was performed using the standardised FSHD evaluation form with validated inter-rater reliability. To investigate the earliest signs of disease, we designed the Infantile Anamnestic Questionnaire (IAQ). Comparison of age at onset was performed using the non-parametric Wilcoxon rank-sum or Kruskal-Wallis test. Comparison of the FSHD score was performed using a general linear model and Wald test. Kaplan-Meier survival analysis was used to estimate the age-specific cumulative motor impairment risk.
Results
No patients had perinatal onset. Among index cases, 36 (54.5%) showed the first signs by 10 years of age. The large majority of patients with early disease onset (26 out of 36, 72.2%) were de novo; whereas the majority of patients with disease onset after 10 years of age were familial (16, 53.3%). Comparison of the disease severity outcome between index cases with age at onset before and over 10 years of age, failed to detect statistical significance (Wald test p value=0.064). Of 61 index cases, only 17 (27.9%) presented extra-muscular conditions. Relatives carrying 1–3 DRA showed a large clinical variability ranging from healthy subjects, to patients with severe motor impairment.
Conclusions
The size of the D4Z4 allele is not always predictive of severe clinical outcome. The high degree of clinical variability suggests that additional factors contribute to the phenotype complexity.
doi:10.1136/bmjopen-2015-007798
PMCID: PMC4716236  PMID: 26733561
4.  Large scale genotype–phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy 
Brain  2013;136(11):3408-3417.
Facioscapulohumeral muscular dystrophy has been genetically linked to reduced numbers (≤8) of D4Z4 repeats at 4q35 combined with 4A(159/161/168) DUX4 polyadenylation signal haplotype. However, we have recently reported that 1.3% of healthy individuals carry this molecular signature and 19% of subjects affected by facioscapulohumeral muscular dystrophy do not carry alleles with eight or fewer D4Z4 repeats. Therefore, prognosis for subjects carrying or at risk of carrying D4Z4 reduced alleles has become more complicated. To test for additional prognostic factors, we measured the degree of motor impairment in a large group of patients affected by facioscapulohumeral muscular dystrophy and their relatives who are carrying D4Z4 reduced alleles. The clinical expression of motor impairment was assessed in 530 subjects, 163 probands and 367 relatives, from 176 unrelated families according to a standardized clinical score. The associations between clinical severity and size of D4Z4 allele, degree of kinship, gender, age and 4q haplotype were evaluated. Overall, 32.2% of relatives did not display any muscle functional impairment. This phenotype was influenced by the degree of relation with proband, because 47.1% of second- through fifth-degree relatives were unaffected, whereas only 27.5% of first-degree family members did not show motor impairment. The estimated risk of developing motor impairment by age 50 for relatives carrying a D4Z4 reduced allele with 1–3 repeats or 4–8 repeats was 88.7% and 55%, respectively. Male relatives had a mean score significantly higher than females (5.4 versus 4.0, P = 0.003). No 4q haplotype was exclusively associated with the presence of disease. In 13% of families in which D4Z4 alleles with 4–8 repeats segregate, the diagnosis of facioscapulohumeral muscular dystrophy was reported only in one generation. In conclusion, this large-scale analysis provides further information that should be taken into account when counselling families in which a reduced allele with 4–8 D4Z4 repeats segregates. In addition, the reduced expression of disease observed in distant relatives suggests that a family’s genetic background plays a role in the occurrence of facioscapulohumeral muscular dystrophy. These results indicate that the identification of new susceptibility factors for this disease will require an accurate classification of families.
doi:10.1093/brain/awt226
PMCID: PMC3808686  PMID: 24030947
facioscapulohumeral muscular dystrophy; D4Z4 reduced allele; genotype–phenotype correlations; penetrance; disease expression
5.  Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype 
BMC Medical Genetics  2012;13:73.
Background
Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial.
Methods
Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females.
Results
The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers.
Conclusions
This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.
doi:10.1186/1471-2350-13-73
PMCID: PMC3459813  PMID: 22894145
Dystrophinopathy; Female carriers; X-inactivation; Transcriptional balancing
6.  The empowerment of translational research: lessons from laminopathies 
The need for a collaborative approach to complex inherited diseases collectively referred to as laminopathies, encouraged Italian researchers, geneticists, physicians and patients to join in the Italian Network for Laminopathies, in 2009. Here, we highlight the advantages and added value of such a multidisciplinary effort to understand pathogenesis, clinical aspects and try to find a cure for Emery-Dreifuss muscular dystrophy, Mandibuloacral dysplasia, Hutchinson-Gilford Progeria and forms of lamin-linked cardiomyopathy, neuropathy and lipodystrophy.
doi:10.1186/1750-1172-7-37
PMCID: PMC3458975  PMID: 22691392
Laminopathies; Emery-Dreifuss Muscular Dystrophy; Dilated Cardiomyopathy with Conduction Defects; Mandibuloacral Dysplasia; Familial Partial Lipodystrophy Type 2; Hutchinson-Gilford Progeria Syndrome; Rare Diseases; Networking activity; interdisciplinary approach to diseases

Results 1-6 (6)