PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Ethanol for cardiac ischemia: the role of protein kinase c 
The physiological effects of ethanol are dependent upon the amount and duration of consumption. Chronic excessive consumption can lead to diseases such as liver cirrhosis, and cardiac arrhythmias, while chronic moderate consumption can have therapeutic effects on the cardiovascular system. Recently, it has also been observed that acute administration of ethanol to animals prior to an ischemic event provides significant protection to the heart. This review focuses on the different modalities of chronic vs. acute ethanol consumption and discusses recent evidence for a protective effect of acute ethanol exposure and the possible use of ethanol as a therapeutic agent.
doi:10.1177/1753944708094735
PMCID: PMC3600863  PMID: 19124442
PKC; ethanol; ischemic preconditioning; ischemia; reperfusion; cardiac protection
2.  Preserved Coronary Endothelial Function by Inhibition of δ Protein Kinase C in a Porcine Acute Myocardial Infarction Model 
International journal of cardiology  2008;133(2):256-259.
Background
Previous studies demonstrate impairment of endothelial-dependent vasodilation after ischemia/reperfusion (I/R). Though we have demonstrated that inhibition of δ protein kinase C (δPKC) at reperfusion reduces myocyte damage and improves cardiac function in a porcine acute myocardial infarction (AMI) model, impact of the selective δPKC inhibitor on epicardial coronary endothelial function remains unknown.
Methods
Either δPKC inhibitor (δV1-1, n=5) or saline (n=5) was infused into the left anterior descending artery at the last 1 minute of the 30-minute ischemia by balloon occlusion. In vivo responses to bradykinin (endothelium-dependent vasodilator) or nitroglycerin (endothelium-independent vasodilator) were analyzed at 24 h after I/R using intravascular ultrasound. Vascular responses were calculated as the ratio of vessel area at each time point (30, 60, 90 and 120 seconds after the infusion), divided by values at baseline (before the infusion).
Results
In control pigs, endothelial-dependent vasodilation following bradykinin infusion in infarct-related epicardial coronary artery was impaired, whereas in δPKC inhibitor treated-pigs the endothelial-dependent vasodilation was preserved. Nitroglycerin infusion caused similar vasodilatory responses in the both groups.
Conclusions
This is the first demonstration that a δPKC inhibitor preserves vasodilator capacity in epicardial coronary arteries in an in vivo porcine AMI model. Because endothelial dysfunction correlates with worse outcome in patients with AMI, this preserved endothelial function in epicardial coronary arteries might result in a better clinical outcome.
doi:10.1016/j.ijcard.2007.11.021
PMCID: PMC2688394  PMID: 18242734
ultrasonography; angioplasty; myocardial infarction; protein kinases; endothelium
3.  Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of εPKC and activation of aldehyde dehydrogenase 2 
The cardioprotective effects of moderate alcohol consumption have been well documented in animal models and in humans. Protection afforded against ischemia and reperfusion injury (I/R) proceeds through an ischemic preconditioning-like mechanism involving the activation of epsilon protein kinase C (εPKC) and is dependent on the time and duration of ethanol treatment. However, the substrates of εPKC and the molecular mechanisms by which the enzyme protects the heart from oxidative damage induced by I/R are not fully described. Using an open-chest model of acute myocardial infarction in vivo, we find that intraperitoneal injection of ethanol (0.5 g/kg) 60 minutes prior to (but not 15 minutes prior to) a 30-minute transient ligation of the left anterior descending coronary artery reduced I/R-mediated injury by 57% (measured as a decrease of creatine phosphokinase release into the blood). Only under cardioprotective conditions, ethanol treatment resulted in the translocation of εPKC to cardiac mitochondria, where the enzyme bound aldehyde dehydrogenase-2 (ALDH2). ALDH2 is an intra-mitochondrial enzyme involved in the detoxification of toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE) and 4-HNE mediates oxidative damage, at least in part, by covalently modifying and inactivating proteins (by forming 4-HNE adducts). In hearts subjected to I/R after ethanol treatment, the levels of 4-HNE protein adducts were lower and JNK1/2 and ERK1/2 activities were diminished relative to the hearts from rats subjected to I/R in the absence of ethanol. Together, this work provides an insight into the mitochondrial-dependent basis of ethanol-induced and εPKC-mediated protection from cardiac ischemia, in vivo.
doi:10.1016/j.yjmcc.2008.09.713
PMCID: PMC2675554  PMID: 18983847
4.  Rationally designed peptide regulators of protein kinase C 
Protein-protein interactions sequester enzymes close to their substrates. Protein kinase C (PKC) is one example of a ubiquitous signaling molecule with effects that are dependent upon localization. Short peptides derived from interaction sites between each PKC isozyme and its receptor for activated C kinase act as highly specific inhibitors and have become available as selective drugs in basic research and animal models of human diseases, such as myocardial infarction and hyperglycemia. Whereas the earlier inhibitory peptides are highly specific, we believe that peptides targeting additional interactions between PKC and selective substrates will generate even more selective tools that regulate different functions of individual isozymes. Here, we discuss the methodologies and applications for identifying selective regulators of PKC.
doi:10.1016/j.tem.2008.10.002
PMCID: PMC2714361  PMID: 19056296
5.  Mast cells and εPKC: A role in cardiac remodeling in hypertension-induced heart failure 
Heart failure (HF) is a chronic syndrome in which pathological cardiac remodeling is an integral part of the disease and mast cell (MC) degranulation-derived mediators have been suggested to play a role in its progression. Protein kinase C (PKC) signaling is a key event in the signal transduction pathway of MC degranulation. We recently found that inhibition of εPKC slows down the progression of hypertension-induced HF in salt-sensitive Dahl rats fed a high-salt diet. We therefore determined whether εPKC inhibition affects MC degranulation in this model. Six week-old male Dahl rats were fed with a high-salt diet to induce systemic hypertension, which resulted in concentric left ventricular hypertrophy at the age of 11 weeks, followed by myocardial dilatation and HF at the age of 17 weeks. We administered εV1-2 an εPKC-selective inhibitor peptide (3 mg/Kg/day), δV1-1, a δPKC-selective inhibitor peptide (3 mg/Kg/day), TAT (negative control; at equimolar concentration; 1.6 mg/Kg/day) or olmesartan (angiotensin receptor blocker [ARB] as a positive control; 3mg/Kg/day) between 11 weeks and 17 weeks. Treatment with εV1-2 attenuated cardiac MC degranulation without affecting MC density, myocardial fibrosis, microvessel patency, vascular thickening and cardiac inflammation in comparison to TAT- or δV1-1-treatment. Treatment with ARB also attenuated MC degranulation and cardiac remodeling, but to a lesser extent when compared to εV1-2. Finally, εV1-2 treatment inhibited MC degranulation in isolated peritoneal MCs. Together, our data suggest that εPKC inhibition attenuates pathological remodeling in hypertension-induced HF, at least in part, by preventing cardiac MC degranulation.
doi:10.1016/j.yjmcc.2008.08.009
PMCID: PMC2657602  PMID: 18804478
Mast cell degranulation; protein kinase C; PKC-selective inhibitor peptide; cardiac remodeling; heart failure
6.  Activating δPKC antagonizes the protective effect of ERK1/2 inhibition against stroke in rats 
Brain research  2008;1251:256-261.
Two pathways that have been shown to mediate cerebral ischemic damage are the MEK/ERK cascade and the pro-apoptotic δPKC pathway. We investigated the relationship between these pathways in a rat model of focal ischemia by observing and modifying the activation state of each pathway. The ERK1/2 inhibitor, U0126, injected at ischemia onset, attenuated the increase in phosphorylated ERK1/2 (P-ERK1/2) after reperfusion. The δPKC inhibitor, δV1-1, delivered at reperfusion, did not significantly change P-ERK1/2 levels. In contrast, the δPKC activator, ψδRACK, injected at reperfusion, reduced ERK1/2 phosphorylation measured 4 h after reperfusion. Additionally, U0126 pretreatment at ischemia onset reduced infarct size compared with vehicle, but U0126 injected at the onset of reperfusion had no protection. Finally, combination of U0126 injection at ischemia onset plus δV1-1 injection at reperfusion further reduced infarct size, while combination of U0126 delivered at ischemia onset with ψδRACK injected at reperfusion increased infarct size compared with U0126 alone. In conclusion, we find that inhibiting both the MEK/ERK and the δPKC pathways offers greater protection than either alone, indicating they likely act independently.
doi:10.1016/j.brainres.2008.11.051
PMCID: PMC2746701  PMID: 19063870
Cerebral ischemia; MEK/ERK cascade; δPKC; ERK1/2
7.  An Activator of Mutant and Wildtype Aldehyde Dehydrogenase Reduces Ischemic Damage to the Heart 
Science (New York, N.Y.)  2008;321(5895):1493-1495.
There is substantial interest in the development of drugs that limit the extent of ischemia-induced cardiac damage caused by myocardial infarction or by certain surgical procedures. Here an unbiased proteomic search identified mitochondrial aldehyde dehydrogenase 2 (ALDH2) as an enzyme whose activation correlates with reduced ischemic heart damage in rodent models. A high-throughput screen yielded a small-molecule activator of ALDH2 (Alda-1) that, when administered to rats prior to an ischemic event, reduced infarct size by 60%, most likely through its inhibitory effect on the formation of cytotoxic aldehydes. In vitro, Alda-1 was a particularly effective activator of ALDH2*2, an inactive mutant form of the enzyme that is found in 40% of East Asian populations. Thus, pharmacologic enhancement of ALDH2 activity may be useful for patients with wildtype or mutant ALDH2 subjected to cardiac ischemia, such as during coronary bypass surgery. (140/140 words)
doi:10.1126/science.1158554
PMCID: PMC2741612  PMID: 18787169
8.  εPKC confers acute tolerance to cerebral ischemic reperfusion injury 
Neuroscience letters  2008;441(1):120-124.
In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection.
doi:10.1016/j.neulet.2008.05.080
PMCID: PMC2597630  PMID: 18586397
Ischemia; preconditioning; protein kinase C; cerebral blood flow
9.  Centrosomal PKCβII and pericentrin are critical for human prostate cancer growth and angiogenesis 
Cancer research  2008;68(16):6831-6839.
Angiogenesis is critical in the progression of prostate cancer. However, the interplay between the proliferation kinetics of tumor endothelial cells (angiogenesis) and tumor cells has not been investigated. Also, protein kinase C (PKC) regulates various aspects of tumor cell growth but its role in prostate cancer has not been investigated in detail. Here, we found that the proliferation rates of endothelial and tumor cells oscillate asynchronously during the growth of human prostate cancer xenografts. Furthermore, our analyses suggest that PKCβII was activated during increased angiogenesis and that PKCβII plays a key role in the proliferation of endothelial cells and tumor cells in human prostate cancer; treatment with a PKCβII-selective inhibitor, βIIV5-3, reduced angiogenesis and tumor cell proliferation. We also find a unique effect of PKCβII inhibition on normalizing pericentrin (a protein regulating cytokinesis), especially in endothelial cells as well as in tumor cells. PKCβII inhibition reduced the level and mislocalization of pericentrin and normalized microtubule organization in the tumor endothelial cells. Although pericentrin has been known to be upregulated in epithelial cells of prostate cancers, its level in tumor endothelium has not been studied in detail. We found that pericentrin is upregulated in human tumor endothelium compared with endothelium adjacent to normal glands in tissues from prostate cancer patients. Our results suggest that a PKCβII inhibitor such as βIIV5-3 may be used to reduce prostate cancer growth by targeting both angiogenesis and tumor cell growth.
doi:10.1158/0008-5472.CAN-07-6195
PMCID: PMC2597632  PMID: 18701509
10.  Dopamine and Ethanol Cause Translocation of εPKC Associated with εRACK: Cross-talk Between PKA and PKC Signaling Pathways 
Molecular pharmacology  2008;73(4):1105-1112.
Previously we found that neural responses to ethanol and the dopamine D2 receptor (D2) agonist NPA involve both epsilon protein kinase C (εPKC) and cAMP-dependent protein kinase A (PKA). However, little is known about the mechanism underlying ethanol- and D2-mediated activation of εPKC and the relationship to PKA activation. In the present study, we used a new εPKC antibody, 14E6, that selectively recognizes active εPKC when not bound to its anchoring protein εRACK (receptor for activated C-kinase), and PKC isozyme-selective inhibitors and activators, to measure PKC translocation and catalytic activity. We show here that ethanol and NPA activated εPKC and also induced translocation of both εPKC and its anchoring protein, εRACK to a new cytosolic site. The selective εPKC agonist, pseudo-εRACK, activated εPKC but did not cause translocation of the εPKC/εRACK complex to the cytosol. These data suggest a step-wise activation and translocation of εPKC following NPA or ethanol treatment where εPKC first translocates and binds to its RACK and subsequently the εPKC/εRACK complex translocates to a new subcellular site. Direct activation of PKA by Sp-cAMPS, PGE1 or the adenosine A2A receptor is sufficient to cause εPKC translocation to the cytosolic compartment in a process that is dependent on PLC activation and requires PKA activity. These data demonstrate a novel cross-talk mechanism between εPKC and PKA signaling systems. PKA and PKC signaling have been implicated in alcohol rewarding properties in the mesolimbic dopamine system. Cross-talk between PKA and PKC may underlie some of the behaviors associated with alcoholism.
doi:10.1124/mol.107.042580
PMCID: PMC2692587  PMID: 18202306

Results 1-10 (10)