PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (80)
 

Clipboard (0)
None
Journals
more »
Year of Publication
more »
Document Types
1.  Genetic variations of aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B are associated with the etiology of atrial fibrillation in Japanese 
Background
Alcohol consumption and oxidative stress are well-known risk factors for developing atrial fibrillation (AF). Single nucleotide polymorphisms (SNPs) of alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes encoding enzymes of alcohol and reactive aldehyde metabolism, respectively, are prevalent among East Asians. Here, we examined whether these SNPs were associated with AF in Japanese patients.
Methods and results
Five hundred seventy-seven Japanese patients with AF undergoing catheter ablation and 1935 controls at Hiroshima University Hospital were studied. Alcohol consumption habits, medical history, electrocardiogram (EKG), electrophysiology and cardiac echocardiography were reviewed. Patients were also genotyped for ALDH2 (rs671) and ADH1B (rs1229984). A significant linear correlation was found between ALDH2 genotype and mean alcohol intake (P = 1.7 × 10−6). Further, ALDH2 (rs671) was associated with AF (P = 7.6 × 10−4, odds ratio [OR] = 0.6). Frequency of the ALDH2 SNP allele A which limits acetaldehyde metabolism was lower in patients with AF (18.8%) than in controls (23.5%). In contrast, we found that the frequencies of the ADH1B SNP genotypes were similar in patients with AF and in controls. Subset analysis among the 182 patients with lone AF and 914 controls (control II) (<60 years of age and without hypertension), both ALDH2 and ADH1B SNPs were significantly associated with AF (P = 0.013, OR = 0.7; P = 0.0007, OR = 1.4, respectively). The frequency of the dysfunctional allele A of ALDH2 was significantly lower and the dysfunctional allele G of ADH1B was significantly higher in patients with lone AF than in control II (ALDH2 A allele frequency = 0.176 vs 0.235, OR = 1.3, P = 0.013, ADH1B SNP G allele frequency = 0.286 vs 0.220, OR = 1.4, P = 0.0007).
Conclusions
When considering all patients enrolled, the dysfunctional ALDH2 allele was negatively associated with AF. When examining a subset of patients with lone AF, the dysfunctional ALDH2 allele was negatively associated with AF and the slower metabolizing ADH1B allele was positively associated with AF. Hence, prolonged metabolic conversion of alcohol to acetaldehyde may be associated with the occurrence of AF in the Japanese and other East Asian populations.
doi:10.1186/s12929-016-0304-x
PMCID: PMC5142328  PMID: 27927211
Atrial fibrillation; Alcohol; ALDH2; ADH1B; Single nucleotide polymorphism
2.  Selective phosphorylation inhibitor of δPKC-PDK protein-protein interactions; application for myocardial injury in vivo 
Protein kinases regulate numerous cellular processes, including cell growth, metabolism and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set up to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK’s docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ~50 nM and reducing cardiac injury IC50 of ~5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 µM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors.
Graphical Abstract
doi:10.1021/jacs.6b02724
PMCID: PMC5065007  PMID: 27218445
3.  Transient Receptor Potential Vanilloid 1 Regulates Mitochondrial Membrane Potential and Myocardial Reperfusion Injury 
Background
The transient receptor potential vanilloid 1 (TRPV1) mediates cellular responses to pain, heat, or noxious stimuli by calcium influx; however, the cellular localization and function of TRPV1 in the cardiomyocyte is largely unknown. We studied whether myocardial injury is regulated by TRPV1 and whether we could mitigate reperfusion injury by limiting the calcineurin interaction with TRPV1.
Methods and Results
In primary cardiomyocytes, confocal and electron microscopy demonstrates that TRPV1 is localized to the mitochondria. Capsaicin, the specific TRPV1 agonist, dose‐dependently reduced mitochondrial membrane potential and was blocked by the TRPV1 antagonist capsazepine or the calcineurin inhibitor cyclosporine. Using in silico analysis, we discovered an interaction site for TRPV1 with calcineurin. We synthesized a peptide, V1‐cal, to inhibit the interaction between TRPV1 and calcineurin. In an in vivo rat myocardial infarction model, V1‐cal given just prior to reperfusion substantially mitigated myocardial infarct size compared with vehicle, capsaicin, or cyclosporine (24±3% versus 61±2%, 45±1%, and 49±2%, respectively; n=6 per group; P<0.01 versus all groups). Infarct size reduction by V1‐cal was also not seen in TRPV1 knockout rats.
Conclusions
TRPV1 is localized at the mitochondria in cardiomyocytes and regulates mitochondrial membrane potential through an interaction with calcineurin. We developed a novel therapeutic, V1‐cal, that substantially reduces reperfusion injury by inhibiting the interaction of calcineurin with TRPV1. These data suggest that TRPV1 is an end‐effector of cardioprotection and that modulating the TRPV1 protein interaction with calcineurin limits reperfusion injury.
doi:10.1161/JAHA.116.003774
PMCID: PMC5079036  PMID: 27671317
acute myocardial infarction; calcineurin; cyclosporine; infarct size; ischemia; mitochondria; reperfusion; reperfusion injury; transient receptor potential vanilloid 1; Myocardial Biology; Ischemia; Myocardial Infarction; Cell Signalling/Signal Transduction
4.  PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation 
PLoS ONE  2016;11(8):e0161993.
The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. However, it remains unclear whether ALDH2 is involved in regulation of adipocyte differentiation. Here, we found that ALDH2 protein levels were lower in white adipose tissue of high-fat diet-fed mice and ob/ob mice relative to lean mice. Knockdown of ALDH2 expression in 3T3-L1 preadipocytes caused an increase in intracellular 4-HNE, thereby attenuated adipocyte differentiation. By contrast, an ALDH2 activator, Alda-1, significantly accelerated adipogenesis, which was accompanied by an increase in adipogenic gene expression. Consistently, adipogenesis was reduced when protein kinase C ε (PKCε), an ALDH2 phosphorylating activator, was silenced in 3T3-L1 preadipocytes, whereas treatment with a PKCε agonist in 3T3-L1 preadipocytes enhanced adipogenesis. Whole-genome microarray profiling of Alda-1-treated cells demonstrated several upregulated transcripts encoding proteins involved in metabolism and the majority of these transcripts are for proteins involved in PPAR signaling pathways. Furthermore, PKCε-ALDH2 interaction alleviates 4-HNE induced aberrant PPARγ regulation on adipogenesis. Taken together, these results demonstrate that ALDH2 activation enhances adipogenesis and signaling pathways involving PPARγ. Thus, activation of PKCε-ALDH2 regulatory axis may be a therapeutic target for treating obesity and type 2 diabetes.
doi:10.1371/journal.pone.0161993
PMCID: PMC5004862  PMID: 27575855
5.  VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease 
Nature Communications  2016;7:12646.
Mutant Huntingtin (mtHtt) causes neurodegeneration in Huntington's disease (HD) by evoking defects in the mitochondria, but the underlying mechanisms remains elusive. Our proteomic analysis identifies valosin-containing protein (VCP) as an mtHtt-binding protein on the mitochondria. Here we show that VCP is selectively translocated to the mitochondria, where it is bound to mtHtt in various HD models. Mitochondria-accumulated VCP elicits excessive mitophagy, causing neuronal cell death. Blocking mtHtt/VCP mitochondrial interaction with a peptide, HV-3, abolishes VCP translocation to the mitochondria, corrects excessive mitophagy and reduces cell death in HD mouse- and patient-derived cells and HD transgenic mouse brains. Treatment with HV-3 reduces behavioural and neuropathological phenotypes of HD in both fragment- and full-length mtHtt transgenic mice. Our findings demonstrate a causal role of mtHtt-induced VCP mitochondrial accumulation in HD pathogenesis and suggest that the peptide HV-3 might be a useful tool for developing new therapeutics to treat HD.
Mitochondria defects caused by mutant huntingtin (mtHtt) have been implicated in Huntington's disease. Here authors show that VCP binds to mtHtt on the mitochondria, and that treatment with a peptide that disrupts this interaction reduces the cellular and behavioural deficits in mouse models of HD.
doi:10.1038/ncomms12646
PMCID: PMC5007466  PMID: 27561680
6.  Mitochondrial Reactive Oxygen Species at the Heart of the Matter: New Therapeutic Approaches for Cardiovascular Diseases 
Circulation research  2015;116(11):1783-1799.
Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases including multiple cardiovascular disorders. However, translation of ROS scavengers (anti-oxidants) into the clinic has not been successful. These anti-oxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional anti-oxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases.
doi:10.1161/CIRCRESAHA.116.305432
PMCID: PMC4443500  PMID: 25999419
Mitochondria; reactive oxygen species (ROS); fission; mitophagy; protein kinase C (PKC)
7.  Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors 
Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosomareceptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs.
Graphical abstract
Highlights
•Identified unique short sequences conserved in parasite but not in host orthologue.•Peptides corresponding to these sequences are active anti-parasitic drug lead.•Cyclization of the peptides generates drug leads for in vivo proof of concept.
doi:10.1016/j.ijpddr.2016.02.003
PMCID: PMC4805777  PMID: 27054066
Chagas disease; Leishmaniasis; Peptide; LACK; TRACK; Scaffold protein
8.  Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism 
Experimental neurology  2014;263:244-253.
Many studies have shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) functions as a cellular protector against oxidative stress by detoxification of cytotoxic aldehydes. Within dopaminergic neurons, dopamine is metabolized by monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL) then converts to a less toxic acid product by ALDH. The highly toxic and reactive DOPAL has been hypothesized to contribute to the selective neurodegeneration in Parkinson’s disease (PD). In this study, we investigated the neuroprotective mechanism and therapeutic effect of ALDH2 in rotenone models for parkinsonism. Overexpression of wild-type ALDH2 gene, but not the enzymatically deficient mutant ALDH2*2 (E504K), reduced rotenone-induced cell death. Application of a potent activator of ALDH2, Alda-1, was effective in protecting against rotenone-induced apoptotic cell death in both SH-SY5Y cells and primary cultured substantia nigra (SN) dopaminergic neurons. In addition, intraperitoneal administration of Alda-1 significantly reduced rotenone- or MPTP-induced death of SN tyrosine hydroxylase (TH)-positive dopaminergic neurons. The attenuation of rotenone-induced apoptosis by Alda-1 resulted from decreasing ROS accumulation, reversal of mitochondrial membrane potential depolarization, and inhibition of activation of proteins related to mitochondrial apoptotic pathway. The present study demonstrates that ALDH2 plays a crucial role in maintaining normal mitochondrial function to protect against neurotoxicity and that Alda-1 is effective in ameliorating mitochondrial dysfunction and inhibiting mitochondria-mediated apoptotic pathway. These results indicate that ALDH2 activation could be a neuroprotective therapy for PD.
doi:10.1016/j.expneurol.2014.09.016
PMCID: PMC4415848  PMID: 25263579
Alda-1; aldehyde dehydrogenase 2 (ALDH2); mitochondrial dysfunction; Parkinson’s disease; rotenone; substantia nigra dopaminergic neurons
9.  A Personalized Medicine Approach for Asian Americans with the Aldehyde Dehydrogenase 2*2 Variant 
Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research.
doi:10.1146/annurev-pharmtox-010814-124915
PMCID: PMC4435945  PMID: 25292432
ALDH2; Asian; cancer; ischemia; alcohol; precision medicine; prediction in pharmacology
10.  Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington’s disease 
EMBO Molecular Medicine  2015;7(10):1307-1326.
Mitochondrial dysfunction is implicated in multiple neurodegenerative diseases. In order to maintain a healthy population of functional mitochondria in cells, defective mitochondria must be properly eliminated by lysosomal machinery in a process referred to as mitophagy. Here, we uncover a new molecular mechanism underlying mitophagy driven by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under the pathological condition of Huntington’s disease (HD) caused by expansion of polyglutamine repeats. Expression of expanded polyglutamine tracts catalytically inactivates GAPDH (iGAPDH), which triggers its selective association with damaged mitochondria in several cell culture models of HD. Through this mechanism, iGAPDH serves as a signaling molecule to induce direct engulfment of damaged mitochondria into lysosomes (micro-mitophagy). However, abnormal interaction of mitochondrial GAPDH with long polyglutamine tracts stalled GAPDH-mediated mitophagy, leading to accumulation of damaged mitochondria, and increased cell death. We further demonstrated that overexpression of inactive GAPDH rescues this blunted process and enhances mitochondrial function and cell survival, indicating a role for GAPDH-driven mitophagy in the pathology of HD.
doi:10.15252/emmm.201505256
PMCID: PMC4604685  PMID: 26268247
glyceraldehyde-3-phosphate dehydrogenase; Huntington’s disease; mitochondria; mitophagy; polyglutamine repeats
11.  Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling 
Cardiovascular Research  2014;103(4):498-508.
Aims
We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model.
Methods and results
We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca2+-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load.
Conclusions
Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.
doi:10.1093/cvr/cvu125
PMCID: PMC4155470  PMID: 24817685
Oxidant stress; Heart disease; Mitochondria; Pharmacological therapy; Bioenergetics
12.  Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1 
Background/Objectives
We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment.
Methods
Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats.
Results
We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats.
Conclusion
Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.
doi:10.1016/j.ijcard.2014.10.140
PMCID: PMC4405147  PMID: 25464432
myocardial infarction; 4-hydroxinonenal; oxidative stress; bioenergetics; aldehyde dehydrogenase 2
13.  The many hats of delta protein kinase C; one enzyme with many functions 
Biochemical Society transactions  2014;42(6):1529-1533.
doi:10.1042/BST20140189
PMCID: PMC4383467  PMID: 25399565
Substrate specificity; peptide regulators; drug development; cardiac ischemia
14.  Development of Selective Inhibitors for Aldehyde Dehydrogenases based on Substituted Indole-2,3-diones 
Journal of medicinal chemistry  2014;57(3):714-722.
Aldehyde dehydrogenases (ALDH) participate in multiple metabolic pathways and have been indicated to play a role in several cancerous disease states. Our laboratory is interested in developing novel and selective ALDH inhibitors. We looked to further work recently published by developing a class of isoenzyme selective inhibitors using a similar indole-2,3-diones that exhibit differential inhibition of ALDH1A1, ALDH2 and ALDH3A1. Kinetic and X-ray crystallography data suggest these inhibitors are competitive against aldehyde binding, forming direct interactions with active site cysteine residues. The selectivity is precise in that these compounds appear to interact directly with the catalytic nucleophile, Cys243, in ALDH3A1, but not in ALDH2. In ALDH2, the 3-keto group is surrounded by the adjacent Cys301/303. Surprisingly, the orientation of the interaction changes depending on the nature of the substitutions on the basic indole ring structure and correlates well with the observed structure-activity relationships for each ALDH isoenzyme.
doi:10.1021/jm401377v
PMCID: PMC3954746  PMID: 24444054
15.  Development of Selective Inhibitors for Aldehyde Dehydrogenases Based on Substituted Indole-2,3-diones 
Journal of Medicinal Chemistry  2014;57(3):714-722.
Aldehyde dehydrogenases (ALDH) participate in multiple metabolic pathways and have been indicated to play a role in several cancerous disease states. Our laboratory is interested in developing novel and selective ALDH inhibitors. We looked to further work recently published by developing a class of isoenzyme-selective inhibitors using similar indole-2,3-diones that exhibit differential inhibition of ALDH1A1, ALDH2, and ALDH3A1. Kinetic and X-ray crystallography data suggest that these inhibitors are competitive against aldehyde binding, forming direct interactions with active-site cysteine residues. The selectivity is precise in that these compounds appear to interact directly with the catalytic nucleophile, Cys243, in ALDH3A1 but not in ALDH2. In ALDH2, the 3-keto group is surrounded by the adjacent Cys301/303. Surprisingly, the orientation of the interaction changes depending on the nature of the substitutions on the basic indole ring structure and correlates well with the observed structure–activity relationships for each ALDH isoenzyme.
doi:10.1021/jm401377v
PMCID: PMC3954746  PMID: 24444054
16.  Translational Medicine: Proceed at Your Own Risk 
Nature reviews. Drug discovery  2013;12(5):327-328.
Although investigators are encouraged to translate their laboratory research to impact the care of patients, there is an unappreciated downside to participating in “T1 translation” from the standpoint of the investigator if their translational efforts do not yield positive results in pivotal clinical trials.
doi:10.1038/nrd4005
PMCID: PMC4283600  PMID: 23629490
17.  Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain 
Science translational medicine  2014;6(251):251ra118.
Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance.
doi:10.1126/scitranslmed.3009539
PMCID: PMC4234033  PMID: 25163478
18.  Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system 
Science translational medicine  2014;6(255):255ra130.
Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies.
doi:10.1126/scitranslmed.3009027
PMCID: PMC4215699  PMID: 25253673
19.  PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING 
Journal of molecular and cellular cardiology  2013;63:10.1016/j.yjmcc.2013.07.006.
Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling.
doi:10.1016/j.yjmcc.2013.07.006
PMCID: PMC3812807  PMID: 23880610
Protein Kinase C ε; Endothelial cells; Fibroblast Growth Factor-2; Vascular Endothelial Growth Factor; Angiogenesis; Exocytosis
20.  Nociceptive-induced Myocardial Remote Conditioning Is Mediated By Neuronal Gamma Protein Kinase C 
Basic research in cardiology  2013;108(5):10.1007/s00395-013-0381-x.
Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning.
Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45±1%, 44±2%, respectively, versus incision: 43±2%, and control: 63±2%, P < 0.001). Western blot showed only εPKC, and not γPKC, is highly expressed in the myocardium. However, applying a selective γPKC inhibitor (γV5-3) to the abdominal skin blocked remote protection by any of these strategies.
Using an ex vivo isolated heart model without an intact nervous system, only selective εPKC activation, unlike a selective classical PKC isozyme activator (activating α, β, βII and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45±1% versus 45±2% and 47±1%, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection.
These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.
doi:10.1007/s00395-013-0381-x
PMCID: PMC3856950  PMID: 23982492
infarct size; remote; incision; protein kinase C; gamma; epsilon
21.  A Novel Aldehyde Dehydrogenase-3 Activator (Alda-89) Protects Submandibular Gland Function from Irradiation without Accelerating Tumor Growth 
Purpose
To determine the effect of Alda-89 (an ALDH3 activitor) on (1) the function of irradiated (RT) submandibular gland (SMG) in mice, (2) its toxicity profile and (3) its effect on the growth of head and neck cancer (HNC) in vitro and in vivo.
Experimental Design
Adult mice were infused with Alda-89 or vehicle before, during and after RT. Saliva secretion was monitored weekly. Hematology, metabolic profile and post-mortem evaluation for toxicity were examined at the time of sacrifice. Alda-89 or vehicle was applied to HNC cell lines in vitro, and SCID mice transplanted with HNC in vivo with or without radiation; HNC growth was monitored. The ALDH3A1 and ALDH3A2 protein expression was evaluated in 89 HNC patients and correlated to freedom from relapse (FFR) and overall survival (OS).
Results
Alda-89 infusion significantly resulted in more whole saliva production and a higher percentage of preserved acini after RT compared to vehicle control. There was no difference in the complete blood count, metabolic profile, and major organ morphology between the Alda-89 and vehicle groups. Compared to vehicle control, Alda-89 treatment did not accelerate HNC cell proliferation in vitro, nor did it affect tumor growth in vivo with or without RT. Higher expression of ALDH3A1 or ALDH3A2 was not significantly associated with worse FFR or OS in either HPV-positive or HPV-negative group.
Conclusion
Alda-89 preserves salivary function after RT without affecting HNC growth or causing measurable toxicity in mice. It is a promising candidate to mitigate RT-related xerostomia.
doi:10.1158/1078-0432.CCR-13-0127
PMCID: PMC3745542  PMID: 23812668
ALDH3A1; ALDH3A2; Alda-89; xerostomia; radiation; head and neck cancer
22.  In vivo measurement of ALDH2 activity in rat liver ethanol model using dynamic MRSI of hyperpolarized [1-13C]pyruvate 
NMR in biomedicine  2012;26(6):607-612.
To date, measurements of the activity of aldehyde dehydrogenase-2 (ALDH2), a critical mitochondrial enzyme for eliminating certain cytotoxic aldehydes in the body and a promising target for drug development, have been largely limited to in vitro methods. Recent advancements in magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-labeled substrates now provide a method to detect and image in vivo metabolic pathways with signal-to-noise ratio gains greater than 10,000 fold over conventional MRS techniques. However aldehydes, due to their toxicity and short T1 relaxation times, are generally poor targets for such 13C-labeled studies. In this work, we show that dynamic magnetic resonance spectroscopic imaging of hyperpolarized [1-13C]pyruvate and its conversion to [1-13C]lactate can provide an indirect in vivo measurement of ALDH2 activity via the concentration of NADH, a co-factor common to both the reduction of pyruvate to lactate and the oxidation of acetaldehyde to acetate. Results from a rat liver ethanol model (n = 9) show that changes in 13C-lactate labeling following the bolus injection of hyperpolarized pyruvate are highly correlated with changes in ALDH2 activity (R2=0.76).
doi:10.1002/nbm.2897
PMCID: PMC3634870  PMID: 23225495
hyperpolarized 13C; ALDH2 activity; liver; ethanol; pyruvate; lactate; NADH
23.  The challenge in translating basic research discoveries to treatment of Huntington disease 
Rare Diseases  2014;2:e28637.
Huntington disease is a rare neurodegenerative disease resulting from insertion and/or expansion of a polyglutamine repeats close to the N-terminal of the huntingtin protein. Although unequivocal genetic tests have been available for about 20 years, current pharmacological treatments do not prevent or slow down disease progression. Recent basic research identified potential novel drug targets for the treatment of Huntington disease. However, there are clear challenges in translating these discoveries into treatment strategies for these patients. The following is a brief discussion of these challenges using our recent experience as an example.
doi:10.4161/rdis.28637
PMCID: PMC4091548  PMID: 25054095
Huntington disease; neurodegeneration; mitochondria; polyglutamine; animal model; protein-protein interactions; P110 peptide inhibitor; Drp1
24.  Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats 
PLoS ONE  2014;9(3):e90576.
Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids.
doi:10.1371/journal.pone.0090576
PMCID: PMC3942445  PMID: 24594607
25.  Selective activation of PKC epsilon in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice 
Journal of neuroscience research  2013;91(6):799-807.
Activation of PKCε confers protection against neuronal ischemia/reperfusion. Since activation of PKCε leads to its translocation to multiple intracellular sites, a mitochondrial-selective PKCε activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKCε. PKCε can regulate key cytoprotective mitochondrial functions including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondrial selective activation of PKCε to protect primary brain cell cultures or mice subjected to ischemic stroke. Pre-treatment with either general PKCε activator peptide, ψεRACK, or mitochondrial-selective PKCε activator, ψεHSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both ψεRACK and ψεHSP90 were blocked by the PKCε antagonist, εV1–2, indicating protection requires PKCε interaction with its anchoring protein, εRACK. Further supporting a mitochondrial mechanism for PKCε, neuroprotection by ψεHSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, ψεHSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hours of reperfusion. Thus selective activation of mitochondrial PKCε preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
doi:10.1002/jnr.23186
PMCID: PMC3905808  PMID: 23426889
mitochondria; astrocytes; acute stroke; cell culture; animal models

Results 1-25 (80)