Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
Folic acid supplements can protect against neural tube defects (NTDs). Low folate and low vitamin B12 status may be maternal risk factors for having an NTD affected pregnancy. However, not all NTDs are preventable by having an adequate folate/ B12 status and other potentially modifiable factors may be involved. Folate and vitamin B12 status have important links to iron metabolism. Animal studies support an association between poor iron status and NTDs but human data are scarce. We examined the relevance of low iron status in a nested NTD case-control study of women within a pregnant population-based cohort.
Pregnant women were recruited between 1986 and 1990, when vitamin or iron supplementation in early pregnancy was rare. Blood samples, taken at an average of 14 weeks gestation, were used to measure ferritin and hemoglobin in 64 women during an NTD affected pregnancy and 207 women with unaffected pregnancies.
No significant differences in maternal ferritin or hemoglobin concentrations were observed between NTD affected and non-affected pregnancies (case median ferritin 16.8μg/L and hemoglobin 12.4g/dL versus 15.4μg/L and 12.3g/dL in controls). As reported previously, red cell folate and vitamin B12 concentrations were significantly lower in cases. Furthermore, there was no significant association of iron status with type of NTD lesion (anencephaly or spina bifida)
We conclude that low maternal iron status during early pregnancy is not an independent risk factor for NTDs. Adding iron to folic acid for periconceptional use may improve iron status but is not likely to prevent NTDs.
PMCID: PMC4018583  PMID: 24535840
ferritin; iron; hemoglobin; neural tube defects
2.  Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects 
BMC Medical Genetics  2014;15:102.
Neural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.
Replication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case–control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case–control models and NTD groupings in white, African American and Hispanic cohorts from NYS.
Of the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.
We report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-014-0102-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4411759  PMID: 25293959
Neural tube defects; Spina bifida; Folate; Folic acid; One-carbon metabolism; Replication
3.  Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects 
BMC Medical Genetics  2012;13:62.
Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk.
A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.
Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.
To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive correction. We have produced a ranked list of variants with the strongest association signals. Variants in the highest rank of associations are likely to include true associations and should be high priority candidates for further study of NTD risk.
PMCID: PMC3458983  PMID: 22856873
Neural tube defects; Spina bifida; Folic acid; One-carbon metabolism; Candidate gene
4.  A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4 
Nature genetics  2010;42(6):525-529.
Case-parent trios were used in a genome wide association study of cleft lip with/without cleft palate (CL/P). SNPs near two genes not previously associated with CL/P [MAFB: most significant SNP rs13041247, with odds ratio per minor allele OR=0.704; 95%CI=0.635,0.778; p=2.05*10−11; and ABCA4: most significant SNP rs560426, with OR=1.432; 95%CI=1.292,1.587; p=5.70*10−12] and two previously identified regions (chr. 8q24 and IRF6) attained genome wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes were similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24 while Asian families showed stronger evidence for MAFB and ABCA4. Expression studies support a role for MAFB in palate development.
PMCID: PMC2941216  PMID: 20436469

Results 1-5 (5)