PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In vivo two-photon imaging of the mouse retina 
Biomedical Optics Express  2013;4(8):1285-1293.
Though in vivo two-photon imaging has been demonstrated in non-human primates, improvements in the signal-to-noise ratio (SNR) would greatly improve its scientific utility. In this study, extrinsic fluorophores, expressed in otherwise transparent retinal ganglion cells, were imaged in the living mouse eye using a two-photon fluorescence adaptive optics scanning laser ophthalmoscope. We recorded two orders of magnitude greater signal levels from extrinsically labeled cells relative to previous work done in two-photon autofluorescence imaging of primates. Features as small as single dendrites in various layers of the retina could be resolved and predictions are made about the feasibility of measuring functional response from cells. In the future, two-photon imaging in the intact eye may allow us to monitor the function of retinal cell classes with infrared light that minimally excites the visual response.
doi:10.1364/BOE.4.001285
PMCID: PMC3756587  PMID: 24009992
(330.4460) Ophthalmic optics and devices; (180.4315) Nonlinear microscopy; (170.0110) Imaging systems
2.  Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy 
Biomedical Optics Express  2010;2(1):139-148.
In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors.
doi:10.1364/BOE.2.000139
PMCID: PMC3028489  PMID: 21326644
(010.1080) adaptive optics; (330.4460) Ophthalmic optics and devices; (330.5310) Vision – photoreceptors; (330.7327) Visual optics, ophthalmic instrumentation
3.  The Reduction of Retinal Autofluorescence Caused by Light Exposure 
Purpose
We have previously shown that long exposure to 568 nm light at levels below the maximum permissible exposure safety limit produces retinal damage preceded by a transient reduction in the autofluorescence of retinal pigment epithelial (RPE) cells in vivo. Here, we determine how the effects of exposure power and duration combine to produce this autofluorescence reduction and find the minimum exposure causing a detectable autofluorescence reduction.
Methods
Macaque retinas were imaged using a fluorescence adaptive optics scanning laser ophthalmoscope to resolve individual RPE cells in vivo. The retina was exposed to 568 nm light over a square subtending 0.5° with energies ranging from 1 J/cm2 to 788 J/cm2, where power and duration were independently varied.
Results
In vivo exposures of 5 J/cm2 and higher caused an immediate decrease in autofluorescence followed by either full autofluorescence recovery (exposures ≤ 210 J/cm2) or permanent RPE cell damage (exposures ≥ 247 J/cm2). No significant autofluorescence reduction was observed for exposures of 2 J/cm2 and lower. Reciprocity of exposure power and duration held for the exposures tested, implying that the total energy delivered to the retina, rather than its distribution in time, determines the amount of autofluorescence reduction.
Conclusions
That reciprocity holds is consistent with a photochemical origin, which may or may not cause retinal degeneration. The implementation of safe methods for delivering light to the retina requires a better understanding of the mechanism causing autofluorescence reduction. Finally, RPE imaging was demonstrated using light levels that do not cause a detectable reduction in autofluorescence.
doi:10.1167/iovs.09-3643
PMCID: PMC2790527  PMID: 19628734
4.  Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium 
Purpose
Autofluorescence fundus imaging using an adaptive optics scanning laser ophthalmoscope (AOSLO) allows for imaging of individual retinal pigment epithelial (RPE) cells in vivo. In this study, the potential of retinal damage was investigated by using radiant exposure levels that are 2 to 150 times those used for routine imaging.
Methods
Macaque retinas were imaged in vivo with a fluorescence AOSLO. The retina was exposed to 568- or 830-nm light for 15 minutes at various intensities over a square ½° per side. Pre-and immediate postexposure images of the photoreceptors and RPE cells were taken over a 2° field. Long-term AOSLO imaging was performed intermittently from 5 to 165 days after exposure. Exposures delivered over a uniform field were also investigated.
Results
Exposures to 568-nm light caused an immediate decrease in autofluorescence of RPE cells. Follow-up imaging revealed either full recovery of autofluorescence or long-term damage in the RPE cells at the exposure. The outcomes of AOSLO exposures and uniform field exposures of equal average power were not significantly different. No effects from 830-nm exposures were observed.
Conclusions
The study revealed a novel change in RPE autofluorescence induced by 568-nm light exposure. Retinal damage occurred as a direct result of total average power, independent of the light-delivery method. Because the exposures were near or below permissible levels in laser safety standards, these results suggest that caution should be used with exposure of the retina to visible light and that the safety standards should be re-evaluated for these exposure conditions.
doi:10.1167/iovs.07-1430
PMCID: PMC2790526  PMID: 18408191
5.  Intravitreal Injection of AAV2 Transduces Macaque Inner Retina 
Intravitreally injected AAV2 transduced inner retinal cells in a restricted region at the macaque fovea. Because macaque and human eyes are similar, the results suggest a need to improve transduction methods in gene therapy for the human inner retina.
Purpose.
Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans.
Methods.
In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters.
Results.
AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters—human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)—AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis.
Conclusions.
The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.
doi:10.1167/iovs.10-6250
PMCID: PMC3088562  PMID: 21310920

Results 1-5 (5)