PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In vivo two-photon imaging of the mouse retina 
Biomedical Optics Express  2013;4(8):1285-1293.
Though in vivo two-photon imaging has been demonstrated in non-human primates, improvements in the signal-to-noise ratio (SNR) would greatly improve its scientific utility. In this study, extrinsic fluorophores, expressed in otherwise transparent retinal ganglion cells, were imaged in the living mouse eye using a two-photon fluorescence adaptive optics scanning laser ophthalmoscope. We recorded two orders of magnitude greater signal levels from extrinsically labeled cells relative to previous work done in two-photon autofluorescence imaging of primates. Features as small as single dendrites in various layers of the retina could be resolved and predictions are made about the feasibility of measuring functional response from cells. In the future, two-photon imaging in the intact eye may allow us to monitor the function of retinal cell classes with infrared light that minimally excites the visual response.
doi:10.1364/BOE.4.001285
PMCID: PMC3756587  PMID: 24009992
(330.4460) Ophthalmic optics and devices; (180.4315) Nonlinear microscopy; (170.0110) Imaging systems
2.  Adaptive optics retinal imaging in the living mouse eye 
Biomedical Optics Express  2012;3(4):715-734.
Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.
doi:10.1364/BOE.3.000715
PMCID: PMC3345801  PMID: 22574260
(170.4460) Ophthalmic optics and devices; (110.1080) Active or adaptive optics; (330.7324) Visual optics, comparative animal models
3.  In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison 
BMC Ophthalmology  2009;9:9.
Background
Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO) scanning laser ophthalmoscopy (SLO), that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed.
Methods
We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue.
Results
Superficial focus (innermost retina) at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs). However, at a deeper focus beneath the NFL, (toward outer retina) the polygonal pattern typical of the ganglion cell layer (inner) and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections.
Conclusion
This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal vascular disorders and other eye diseases, such as glaucoma.
doi:10.1186/1471-2415-9-9
PMCID: PMC2744910  PMID: 19698151

Results 1-3 (3)