PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Variants in MTNR1B influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J F | Manning, Alisa K | Jackson, Anne U | Aulchenko, Yurii | Potter, Simon C | Erdos, Michael R | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S | Bergman, Richard N | Bochud, Murielle | Bonnycastle, Lori L | Buchanan, Thomas A | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S | Crisponi, Laura | de Geus, Eco J C | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M | McCann, Owen T | Mohlke, Karen L | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G | Voight, Benjamin F | Waterworth, Dawn | Wichmann, H-Erich | Willemsen, Gonneke | Witteman, Jacqueline C M | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S | Peltonen, Leena | Groop, Leif C | Mooser, Vincent | Cupples, L Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M | Stefansson, Kari | McCarthy, Mark I | Wareham, Nicholas J | Meigs, James B | Abecasis, Gonçalo R
Nature genetics  2008;41(1):77-81.
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 = × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
2.  Learning From Molecular Genetics 
Diabetes  2008;57(11):2889-2898.
doi:10.2337/db08-0343
PMCID: PMC2570381  PMID: 18971436
3.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes 
Zeggini, Eleftheria | Scott, Laura J. | Saxena, Richa | Voight, Benjamin F. | Marchini, Jonathan L | Hu, Tainle | de Bakker, Paul IW | Abecasis, Gonçalo R | Almgren, Peter | Andersen, Gitte | Ardlie, Kristin | Boström, Kristina Bengtsson | Bergman, Richard N | Bonnycastle, Lori L | Borch-Johnsen, Knut | Burtt, Noël P | Chen, Hong | Chines, Peter S | Daly, Mark J | Deodhar, Parimal | Ding, Charles | Doney, Alex S F | Duren, William L | Elliott, Katherine S | Erdos, Michael R | Frayling, Timothy M | Freathy, Rachel M | Gianniny, Lauren | Grallert, Harald | Grarup, Niels | Groves, Christopher J | Guiducci, Candace | Hansen, Torben | Herder, Christian | Hitman, Graham A | Hughes, Thomas E | Isomaa, Bo | Jackson, Anne U | Jørgensen, Torben | Kong, Augustine | Kubalanza, Kari | Kuruvilla, Finny G | Kuusisto, Johanna | Langenberg, Claudia | Lango, Hana | Lauritzen, Torsten | Li, Yun | Lindgren, Cecilia M | Lyssenko, Valeriya | Marvelle, Amanda F | Meisinger, Christa | Midthjell, Kristian | Mohlke, Karen L | Morken, Mario A | Morris, Andrew D | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Palmer, Colin NA | Payne, Felicity | Perry, John RB | Pettersen, Elin | Platou, Carl | Prokopenko, Inga | Qi, Lu | Qin, Li | Rayner, Nigel W | Rees, Matthew | Roix, Jeffrey J | Sandbæk, Anelli | Shields, Beverley | Sjögren, Marketa | Steinthorsdottir, Valgerdur | Stringham, Heather M | Swift, Amy J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Timpson, Nicholas J | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Walker, Mark | Watanabe, Richard M | Weedon, Michael N | Willer, Cristen J | Illig, Thomas | Hveem, Kristian | Hu, Frank B | Laakso, Markku | Stefansson, Kari | Pedersen, Oluf | Wareham, Nicholas J | Barroso, Inês | Hattersley, Andrew T | Collins, Francis S | Groop, Leif | McCarthy, Mark I | Boehnke, Michael | Altshuler, David
Nature genetics  2008;40(5):638-645.
Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10−14), CDC123/CAMK1D (p=1.2×10−10), TSPAN8/LGR5 (p=1.1×10−9), THADA (p=1.1×10−9), ADAMTS9 (p=1.2×10−8), and NOTCH2 (p=4.1×10−8) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D.
doi:10.1038/ng.120
PMCID: PMC2672416  PMID: 18372903
4.  Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI 
Diabetes  2008;57(5):1419-1426.
OBJECTIVE
Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits.
RESEARCH DESIGN AND METHODS
We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations.
RESULTS
Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001– 0.048]; P = 0.044), and triglycerides (0.028 [0.003– 0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008 – 0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10 –1.25]; P = 3 × 10−6).
CONCLUSIONS
FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
doi:10.2337/db07-1466
PMCID: PMC3073395  PMID: 18346983
5.  Regulation of Fto/Ftm gene expression in mice and humans 
Two recent, large GWAS in European populations have associated a ∼47 Kb region that contains part of the FTO gene with high BMI. The functions of FTO and adjacent FTM in human biology are not clear. We examined expression of these genes in organs of mice segregating for monogenic obesity mutations, exposed to under/over feeding, and to 4 °C. Fto/Ftm expression was reduced in mesenteric adipose tissue of mice segregating for the Ay, Lepob, Leprdb, Cpefat or tub mutations and there was a similar trend in other tissues. These effects were not due to adiposity per se. Hypothalamic Fto and Ftm expression were decreased by fasting in lean and obese animals and by cold exposure in lean mice. The fact that responses of Fto and Ftm expression to these manipulations were almost indistinguishable suggested that the genes might be co-regulated. The putative overlapping regulatory region contains at least 2 canonical CUTL1 binding sites. One of these nominal CUTL1 sites includes rs8050136, a SNP associated with high body mass. The A allele of rs8050136 – associated with lower body mass than the C allele – preferentially bound CUTL1 in human fibroblast DNA. 70% knockdown of CUTL1 expression in human fibroblasts decreased FTO and FTM expression by 90 and 65 %, respectively. Animals and humans with various genetic interruptions of FTO or FTM have phenotypes reminiscent of aspects of the Bardet-Biedl obesity syndrome, a confirmed “ciliopathy”. FTM has recently been shown to be a ciliary basal body protein.
doi:10.1152/ajpregu.00839.2007
PMCID: PMC2808712  PMID: 18256137
obesity; hypothalamus; adipose tissue; CUTL1
6.  Variants in the melatonin receptor 1B gene (MTNR1B) influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C. | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J.F. | Manning, Alisa K. | Jackson, Anne U. | Aulchenko, Yurii | Potter, Simon C. | Erdos, Michael R. | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S. | Bergman, Richard N. | Bochud, Murielle | Bonnycastle, Lori L. | Buchanan, Thomas A. | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S. | Crisponi, Laura | de Geus, Eco JC | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E. | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M. | McCann, Owen T. | Mohlke, Karen L. | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J. | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H. | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M. | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G. | Voight, Benjamin F. | Waterworth, Dawn | Wichmann, H.-Erich | Willemsen, Gonneke | Witteman, Jacqueline CM | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D. | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S. | Peltonen, Leena | Groop, Leif C. | Mooser, Vincent | Cupples, L. Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M. | Stefansson, Kari | McCarthy, Mark I. | Wareham, Nicholas J. | Meigs, James B. | Abecasis, Goncalo R.
Nature genetics  2008;41(1):77-81.
To identify novel genetic loci associated with fasting glucose concentrations, we examined the leading association signals in 10 genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding the melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G-allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95%CI 0.06–0.08) mmol/L in fasting glucose levels (P=3.2×10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P=1.1×10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05–1.12), per G allele P=3.3×10−7) in a meta-analysis of thirteen case-control studies totalling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P=1.1×10−57) and GCK (rs4607517, P=1.0×10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
7.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE—Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS—Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS—Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ∼1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91–1.19]).
CONCLUSIONS—These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231
8.  Assessing the Combined Impact of 18 Common Genetic Variants of Modest Effect Sizes on Type 2 Diabetes Risk 
Diabetes  2008;57(11):3129-3135.
OBJECTIVES—Genome-wide association studies have dramatically increased the number of common genetic variants that are robustly associated with type 2 diabetes. A possible clinical use of this information is to identify individuals at high risk of developing the disease, so that preventative measures may be more effectively targeted. Here, we assess the ability of 18 confirmed type 2 diabetes variants to differentiate between type 2 diabetic case and control subjects.
RESEARCH DESIGN AND METHODS—We assessed index single nucleotide polymorphisms (SNPs) for the 18 independent loci in 2,598 control subjects and 2,309 case subjects from the Genetics of Diabetes Audit and Research Tayside Study. The discriminatory ability of the combined SNP information was assessed by grouping individuals based on number of risk alleles carried and determining relative odds of type 2 diabetes and by calculating the area under the receiver-operator characteristic curve (AUC).
RESULTS—Individuals carrying more risk alleles had a higher risk of type 2 diabetes. For example, 1.2% of individuals with >24 risk alleles had an odds ratio of 4.2 (95% CI 2.11–8.56) against the 1.8% with 10–12 risk alleles. The AUC (a measure of discriminative accuracy) for these variants was 0.60. The AUC for age, BMI, and sex was 0.78, and adding the genetic risk variants only marginally increased this to 0.80.
CONCLUSIONS—Currently, common risk variants for type 2 diabetes do not provide strong predictive value at a population level. However, the joint effect of risk variants identified subgroups of the population at substantially different risk of disease. Further studies are needed to assess whether individuals with extreme numbers of risk alleles may benefit from genetic testing.
doi:10.2337/db08-0504
PMCID: PMC2570411  PMID: 18591388
9.  Genome-wide association studies: potential next steps on a genetic journey 
Human Molecular Genetics  2008;17(R2):R156-R165.
Genome-wide association studies have successfully identified numerous loci at which common variants influence disease risk or quantitative traits. Despite these successes, the variants identified by these studies have generally explained only a small fraction of the heritable component of disease risk, and have not pinpointed with certainty the causal variant(s) at the associated loci. Furthermore, the mechanisms of action by which associated loci influence disease or quantitative phenotypes are often unclear, because we do not know through which gene(s) the associated variants exert their effects or because these gene(s) are of unknown function or have no clear connection to known disease biology. Thus, the initial set of genome-wide association studies serve as a starting point for future genetic and functional studies. We outline possible next steps that may help accelerate progress from genetic studies to the biological knowledge that can guide the development of predictive, preventive, or therapeutic measures.
doi:10.1093/hmg/ddn289
PMCID: PMC2782356  PMID: 18852205
10.  FTO Gene Variants are Strongly Associated with Type 2 Diabetes but only weakly with Obesity in South Asian Indians 
Diabetologia  2008;52(2):247-252.
Background
Variants in FTO (fat mass and obesity associated) gene are associated with obesity and type 2 diabetes (T2D) in white Europeans. These associations are not consistent in Asians and there are few reports in South Asian Indians who develop T2D at a much lower body mass index (BMI) than that in the white Europeans.
Aims and hypothesis
We studied the association of FTO variants with T2D and measures of obesity in South Asian Indians in Pune, India.
Methods
We genotyped by sequencing, two SNPs rs9939609 and rs7191344, in the FTO gene in 1453 type 2 diabetes patients and 1361 controls and a further 961 population based individuals from India .
Results
We observed a strong association of the minor allele A at rs9939609 with T2D (OR per allele =1.26 [95% CI, 1.13-1.40], P=3×10-5). The variant was also associated with BMI but this association appeared to be weaker (0.06SDs; 95%CIs:0.01-0.10, p=0.017) than the previously reported effect in Europeans (0.10SDs 95%CIs:0.09-0.12). Unlike in the Europeans, the association with T2D remained when adjusting for BMI (OR per allele for T2D=1.21 (95% CI, 1.06-1.37); P=4.0 × 10-3). Similar results were obtained when using waist circumference and other anthropometric parameters.
Conclusions
Our study replicates the strong association of FTO variants with type 2 diabetes in South Asian Indians but suggests that the association of FTO with T2D in them might operate through mechanisms other than obesity. This could imply a fundamental difference between Indians and Europeans in the mechanisms linking body size with T2D.
doi:10.1007/s00125-008-1186-6
PMCID: PMC2658005  PMID: 19005641
FTO; type 2 diabetes mellitus; polymorphisms; ethnicity; body mass index
11.  Six new loci associated with body mass index highlight a neuronal influence on body weight regulation 
Willer, Cristen J | Speliotes, Elizabeth K | Loos, Ruth J F | Li, Shengxu | Lindgren, Cecilia M | Heid, Iris M | Berndt, Sonja I | Elliott, Amanda L | Jackson, Anne U | Lamina, Claudia | Lettre, Guillaume | Lim, Noha | Lyon, Helen N | McCarroll, Steven A | Papadakis, Konstantinos | Qi, Lu | Randall, Joshua C | Roccasecca, Rosa Maria | Sanna, Serena | Scheet, Paul | Weedon, Michael N | Wheeler, Eleanor | Zhao, Jing Hua | Jacobs, Leonie C | Prokopenko, Inga | Soranzo, Nicole | Tanaka, Toshiko | Timpson, Nicholas J | Almgren, Peter | Bennett, Amanda | Bergman, Richard N | Bingham, Sheila A | Bonnycastle, Lori L | Brown, Morris | Burtt, Noël P | Chines, Peter | Coin, Lachlan | Collins, Francis S | Connell, John M | Cooper, Cyrus | Smith, George Davey | Dennison, Elaine M | Deodhar, Parimal | Elliott, Paul | Erdos, Michael R | Estrada, Karol | Evans, David M | Gianniny, Lauren | Gieger, Christian | Gillson, Christopher J | Guiducci, Candace | Hackett, Rachel | Hadley, David | Hall, Alistair S | Havulinna, Aki S | Hebebrand, Johannes | Hofman, Albert | Isomaa, Bo | Jacobs, Kevin B | Johnson, Toby | Jousilahti, Pekka | Jovanovic, Zorica | Khaw, Kay-Tee | Kraft, Peter | Kuokkanen, Mikko | Kuusisto, Johanna | Laitinen, Jaana | Lakatta, Edward G | Luan, Jian'an | Luben, Robert N | Mangino, Massimo | McArdle, Wendy L | Meitinger, Thomas | Mulas, Antonella | Munroe, Patricia B | Narisu, Narisu | Ness, Andrew R | Northstone, Kate | O'Rahilly, Stephen | Purmann, Carolin | Rees, Matthew G | Ridderstråle, Martin | Ring, Susan M | Rivadeneira, Fernando | Ruokonen, Aimo | Sandhu, Manjinder S | Saramies, Jouko | Scott, Laura J | Scuteri, Angelo | Silander, Kaisa | Sims, Matthew A | Song, Kijoung | Stephens, Jonathan | Stevens, Suzanne | Stringham, Heather M | Tung, Y C Loraine | Valle, Timo T | Van Duijn, Cornelia M | Vimaleswaran, Karani S | Vollenweider, Peter | Waeber, Gerard | Wallace, Chris | Watanabe, Richard M | Waterworth, Dawn M | Watkins, Nicholas | Witteman, Jacqueline C M | Zeggini, Eleftheria | Zhai, Guangju | Zillikens, M Carola | Altshuler, David | Caulfield, Mark J | Chanock, Stephen J | Farooqi, I Sadaf | Ferrucci, Luigi | Guralnik, Jack M | Hattersley, Andrew T | Hu, Frank B | Jarvelin, Marjo-Riitta | Laakso, Markku | Mooser, Vincent | Ong, Ken K | Ouwehand, Willem H | Salomaa, Veikko | Samani, Nilesh J | Spector, Timothy D | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uda, Manuela | Uitterlinden, André G | Wareham, Nicholas J | Deloukas, Panagiotis | Frayling, Timothy M | Groop, Leif C | Hayes, Richard B | Hunter, David J | Mohlke, Karen L | Peltonen, Leena | Schlessinger, David | Strachan, David P | Wichmann, H-Erich | McCarthy, Mark I | Boehnke, Michael | Barroso, Inês | Abecasis, Gonçalo R | Hirschhorn, Joel N
Nature genetics  2008;41(1):25-34.
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 × 10−8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
doi:10.1038/ng.287
PMCID: PMC2695662  PMID: 19079261
12.  Genome-wide association analysis of metabolic traits in a birth cohort from a founder population 
Nature genetics  2008;41(1):35-46.
Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.
doi:10.1038/ng.271
PMCID: PMC2687077  PMID: 19060910
13.  Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts 
Nature genetics  2008;41(1):47-55.
Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797-22,562 persons, aged 18-104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 × 10-8), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 × 10-11; LDL, P = 2.6 × 10-10), TMEM57 (TC, P = 5.4 × 10-10), CTCF-PRMT8 region (HDL, P = 8.3 × 10-16), DNAH11 (LDL, P = 6.1 × 10-9), FADS3-FADS2 (TC, P = 1.5 × 10-10; LDL, P = 4.4 × 10-13) and MADD-FOLH1 region (HDL, P = 6 × 10-11). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.
doi:10.1038/ng.269
PMCID: PMC2687074  PMID: 19060911
14.  Genome-wide association analysis identifies 20 loci that influence adult height 
Nature genetics  2008;40(5):575-583.
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 × 10−7, with 10 reaching P < 1 × 10−10). Combined, the 20 SNPs explain ~3% of height variation, with a ~5 cm difference between the 6.2% of people with 17 or fewer ‘tall’ alleles compared to the 5.5% with 27 or more ‘tall’ alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
doi:10.1038/ng.121
PMCID: PMC2681221  PMID: 18391952
15.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE
Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS
Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS
Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ~1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91-1.19]).
CONCLUSIONS
These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231
16.  Common variants near MC4R are associated with fat mass, weight and risk of obesity 
Loos, Ruth J F | Lindgren, Cecilia M | Li, Shengxu | Wheeler, Eleanor | Zhao, Jing Hua | Prokopenko, Inga | Inouye, Michael | Freathy, Rachel M | Attwood, Antony P | Beckmann, Jacques S | Berndt, Sonja I | Bergmann, Sven | Bennett, Amanda J | Bingham, Sheila A | Bochud, Murielle | Brown, Morris | Cauchi, Stéphane | Connell, John M | Cooper, Cyrus | Smith, George Davey | Day, Ian | Dina, Christian | De, Subhajyoti | Dermitzakis, Emmanouil T | Doney, Alex S F | Elliott, Katherine S | Elliott, Paul | Evans, David M | Farooqi, I Sadaf | Froguel, Philippe | Ghori, Jilur | Groves, Christopher J | Gwilliam, Rhian | Hadley, David | Hall, Alistair S | Hattersley, Andrew T | Hebebrand, Johannes | Heid, Iris M | Herrera, Blanca | Hinney, Anke | Hunt, Sarah E | Jarvelin, Marjo-Riitta | Johnson, Toby | Jolley, Jennifer D M | Karpe, Fredrik | Keniry, Andrew | Khaw, Kay-Tee | Luben, Robert N | Mangino, Massimo | Marchini, Jonathan | McArdle, Wendy L | McGinnis, Ralph | Meyre, David | Munroe, Patricia B | Morris, Andrew D | Ness, Andrew R | Neville, Matthew J | Nica, Alexandra C | Ong, Ken K | O'Rahilly, Stephen | Owen, Katharine R | Palmer, Colin N A | Papadakis, Konstantinos | Potter, Simon | Pouta, Anneli | Qi, Lu | Randall, Joshua C | Rayner, Nigel W | Ring, Susan M | Sandhu, Manjinder S | Scherag, André | Sims, Matthew A | Song, Kijoung | Soranzo, Nicole | Speliotes, Elizabeth K | Syddall, Holly E | Teichmann, Sarah A | Timpson, Nicholas J | Tobias, Jonathan H | Uda, Manuela | Vogel, Carla I Ganz | Wallace, Chris | Waterworth, Dawn M | Weedon, Michael N | Willer, Cristen J | Wraight, Vicki L | Yuan, Xin | Zeggini, Eleftheria | Hirschhorn, Joel N | Strachan, David P | Ouwehand, Willem H | Caulfield, Mark J | Samani, Nilesh J | Frayling, Timothy M | Vollenweider, Peter | Waeber, Gerard | Mooser, Vincent | Deloukas, Panos | McCarthy, Mark I | Wareham, Nicholas J | Barroso, Inês | Jacobs, Kevin B | Chanock, Stephen J | Hayes, Richard B | Lamina, Claudia | Gieger, Christian | Illig, Thomas | Meitinger, Thomas | Wichmann, H-Erich | Kraft, Peter | Hankinson, Susan E | Hunter, David J | Hu, Frank B | Lyon, Helen N | Voight, Benjamin F | Ridderstrale, Martin | Groop, Leif | Scheet, Paul | Sanna, Serena | Abecasis, Goncalo R | Albai, Giuseppe | Nagaraja, Ramaiah | Schlessinger, David | Jackson, Anne U | Tuomilehto, Jaakko | Collins, Francis S | Boehnke, Michael | Mohlke, Karen L
Nature genetics  2008;40(6):768-775.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 × 10−6) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 × 10−15) and 5,988 children aged 7–11 (0.13 Z-score units; P = 1.5 × 10−8). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 × 10−11). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 × 10−4). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
doi:10.1038/ng.140
PMCID: PMC2669167  PMID: 18454148
17.  Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies 
PLoS ONE  2008;3(10):e3583.
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
doi:10.1371/journal.pone.0003583
PMCID: PMC2571995  PMID: 18974833
18.  A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs) 
PLoS Genetics  2008;4(5):e1000072.
There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts – cis effects, and elsewhere in the genome – trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10−57), CCL4L1 (p = 3.9×10−21), IL18 (p = 6.8×10−13), LPA (p = 4.4×10−10), GGT1 (p = 1.5×10−7), SHBG (p = 3.1×10−7), CRP (p = 6.4×10−6) and IL1RN (p = 7.3×10−6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10−40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.
Author Summary
One of the central dogmas of molecular genetics is that DNA is transcribed to RNA which is translated to protein and alterations to proteins can influence human diseases. Genome-wide association studies have recently revealed many new DNA variants that influence human diseases. To complement these efforts, several genome-wide studies have established that DNA variation influences mRNA expression levels. Loci influencing mRNA levels have been termed “eQTLs”. In this study we have performed the first genome-wide association study of the third piece in this jigsaw – the role of DNA variation in relation to protein levels, or “pQTLs”. We analysed 42 proteins measured in blood fractions from the InCHIANTI study. We identified eight cis effects including common variants in or near the IL6R, CCL4, IL18, LPA, GGT1, SHBG, CRP and IL1RN genes, all associated with blood levels of their respective protein products. Mechanisms implicated included altered transcription (GGT1) but also rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA) and variation in gene copy number (CCL4). Blood levels of many of these proteins are correlated with human diseases and the identification of “pQTLs” may in turn help our understanding of disease.
doi:10.1371/journal.pgen.1000072
PMCID: PMC2362067  PMID: 18464913
19.  Exploring the Developmental Overnutrition Hypothesis Using Parental–Offspring Associations and FTO as an Instrumental Variable 
PLoS Medicine  2008;5(3):e33.
Background
The developmental overnutrition hypothesis suggests that greater maternal obesity during pregnancy results in increased offspring adiposity in later life. If true, this would result in the obesity epidemic progressing across generations irrespective of environmental or genetic changes. It is therefore important to robustly test this hypothesis.
Methods and Findings
We explored this hypothesis by comparing the associations of maternal and paternal pre-pregnancy body mass index (BMI) with offspring dual energy X-ray absorptiometry (DXA)–determined fat mass measured at 9 to 11 y (4,091 parent–offspring trios) and by using maternal FTO genotype, controlling for offspring FTO genotype, as an instrument for maternal adiposity. Both maternal and paternal BMI were positively associated with offspring fat mass, but the maternal association effect size was larger than that in the paternal association in all models: mean difference in offspring sex- and age-standardised fat mass z-score per 1 standard deviation BMI 0.24 (95% confidence interval [CI]: 0.22 to 0.26) for maternal BMI versus 0.13 (95% CI: 0.11, 0.15) for paternal BMI; p-value for difference in effect < 0.001. The stronger maternal association was robust to sensitivity analyses assuming levels of non-paternity up to 20%. When maternal FTO, controlling for offspring FTO, was used as an instrument for the effect of maternal adiposity, the mean difference in offspring fat mass z-score per 1 standard deviation maternal BMI was −0.08 (95% CI: −0.56 to 0.41), with no strong statistical evidence that this differed from the observational ordinary least squares analyses (p = 0.17).
Conclusions
Neither our parental comparisons nor the use of FTO genotype as an instrumental variable, suggest that greater maternal BMI during offspring development has a marked effect on offspring fat mass at age 9–11 y. Developmental overnutrition related to greater maternal BMI is unlikely to have driven the recent obesity epidemic.
Using parental-offspring associations and theFTO gene as an instrumental variable for maternal adiposity, Debbie Lawlor and colleagues found that greater maternal BMI during offspring development does not appear to have a marked effect on offspring fat mass at age 9-11.
Editors' Summary
Background.
Since the 1970s, the proportion of children and adults who are overweight or obese (people who have an unhealthy amount of body fat) has increased sharply in many countries. In the US, 1 in 3 adults is now obese; in the mid-1970s it was only 1 in 7. Similarly, the proportion of overweight children has risen from 1 in 20 to 1 in 5. An adult is considered to be overweight if their body mass index (BMI)—their weight in kilograms divided by their height in meters squared—is between 25 and 30, and obese if it is more than 30. For children, the healthy BMI depends on their age and gender. Compared to people with a healthy weight (a BMI between 18.5 and 25), overweight or obese individuals have an increased lifetime risk of developing diabetes and other adverse health conditions, sometimes becoming ill while they are still young. People become unhealthily fat when they consume food and drink that contains more energy than they need for their daily activities. It should, therefore, be possible to avoid becoming obese by having a healthy diet and exercising regularly.
Why Was This Study Done?
Some researchers think that “developmental overnutrition” may have caused the recent increase in waistline measurements. In other words, if a mother is overweight during pregnancy, high sugar and fat levels in her body might permanently affect her growing baby's appetite control and metabolism, and so her offspring might be at risk of becoming obese in later life. If this hypothesis is true, each generation will tend to be fatter than the previous one and it will be very hard to halt the obesity epidemic simply by encouraging people to eat less and exercise more. In this study, the researchers have used two approaches to test the developmental overnutrition hypothesis. First, they have asked whether offspring fat mass is more strongly related to maternal BMI than to paternal BMI; it should be if the hypothesis is true. Second, they have asked whether a genetic indicator of maternal fatness—the “A” variant of the FTO gene—is related to offspring fat mass. A statistical association between maternal FTO genotype (genetic make-up) and offspring fat mass would support the developmental nutrition hypothesis.
What Did the Researchers Do and Find?
In 1991–1992, the Avon Longitudinal Study of Parents and Children (ALSPAC) enrolled about 14,000 pregnant women and now examines their offspring at regular intervals. The researchers first used statistical methods to look for associations between the self-reported prepregnancy BMI of the parents of about 4,000 children and the children's fat mass at ages 9–11 years measured using a technique called dual energy X-ray absorptiometry. Both maternal and paternal BMI were positively associated with offspring fat mass (that is, fatter parents had fatter children) but the effect of maternal BMI was greater than the effect of paternal BMI. When the researchers examined maternal FTO genotypes and offspring fat mass (after allowing for the offspring's FTO genotype, which would directly affect their fat mass), there was no statistical evidence to suggest that differences in offspring fat mass were related to the maternal FTO genotype.
What Do These Findings Mean?
Although the findings from first approach provide some support for the development overnutrition hypothesis, the effect of maternal BMI on offspring fat mass is too weak to explain the recent obesity epidemic. Developmental overnutrition could, however, be responsible for the much slower increase in obesity that began a century ago. The findings from the second approach provide no support for the developmental overnutrition hypothesis, although these results have wide error margins and need confirming in a larger study. The researchers also note that the effects of developmental overnutrition on offspring fat mass, although weak at age 9–11, might become more important at later ages. Nevertheless, for now, it seems unlikely that developmental overnutrition has been a major driver of the recent obesity epidemic. Interventions that aim to improve people's diet and to increase their physical activity levels could therefore slow or even halt the epidemic.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050033.
See a related PLoS Medicine Perspective article
The MedlinePlus encyclopedia has a page on obesity (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of obesity (in English and Spanish)
The UK National Health Service's health Web site (NHS Direct) provides information about obesity
The International Obesity Taskforce provides information about preventing obesity and on childhood obesity
The UK Foods Standards Agency, the United States Department of Agriculture, and Shaping America's Health all provide useful advice about healthy eating for adults and children
The ALSPAC Web site provides information about the Avon Longitudinal Study of Parents and Children and its results so far
doi:10.1371/journal.pmed.0050033
PMCID: PMC2265763  PMID: 18336062

Results 1-19 (19)