PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The Importance of Global Studies of the Genetics of Type 2 Diabetes 
Diabetes & Metabolism Journal  2011;35(2):91-100.
Genome wide association analyses have revealed large numbers of common variants influencing predisposition to type 2 diabetes and related phenotypes. These studies have predominantly featured European populations, but are now being extended to samples from a wider range of ethnic groups. The transethnic analysis of association data is already providing insights into the genetic, molecular and biological causes of diabetes, and the relevance of such studies will increase as human discovery genetics increasingly moves towards sequencing-based approaches and a focus on low frequency and rare variants.
doi:10.4093/dmj.2011.35.2.91
PMCID: PMC3122900  PMID: 21738890
Diabetes mellitus, type 2; Fine-mapping; Genetics; Genome-wide association; Multiethnic; Resequencing; Transethnic
2.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
OBJECTIVE
The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.
RESEARCH DESIGN AND METHODS
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.
RESULTS
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52–0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97–1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI −0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [−0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log10 triglycerides: 0.61 [95% CI 0.45–0.83]; P = 0.002).
CONCLUSIONS
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
3.  Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes 
Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.
doi:10.1172/JCI46425
PMCID: PMC3248284  PMID: 22182842
4.  Mendelian Randomization Studies do not Support a Role for Raised Circulating Triglyceride Levels influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
Objective
The causal nature of associations between circulating triglycerides, insulin resistance and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes, raised normal fasting glucose levels, and hepatic insulin resistance.
Research design and methods
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against type 2 diabetes status in 5637 cases, 6860 controls, and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8271 non-diabetic individuals from four studies.
Results
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (0.59 SD [95% CI: 0.52, 0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio (OR) 0.99 [95% CI: 0.97, 1.01]; P = 0.26). In non-diabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (0.00 SD per weighted allele [95% CI: −0.01, 0.02]; P = 0.72) or increased fasting glucose levels (0.00 SD per weighted allele [95% CI: −0.01, 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose or fasting insulin, and, for diabetes, showed a trend towards a protective association (OR per 1 SD increase in log10-triglycerides: 0.61 [95% CI: 0.45, 0.83]; P = 0.002).
Conclusion
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes, or raise fasting glucose or fasting insulin levels in non-diabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
5.  Rapid Testing of Gene-Gene Interactions in Genome-Wide Association Studies of Binary and Quantitative Phenotypes 
Genetic Epidemiology  2011;35(8):800-808.
Genome-wide association (GWA) studies have been extremely successful in identifying novel loci contributing effects to a wide range of complex human traits. However, despite this success, the joint marginal effects of these loci account for only a small proportion of the heritability of these traits. Interactions between variants in different loci are not typically modelled in traditional GWA analysis, but may account for some of the missing heritability in humans, as they do in other model organisms. One of the key challenges in performing gene-gene interaction studies is the computational burden of the analysis. We propose a two-stage interaction analysis strategy to address this challenge in the context of both quantitative traits and dichotomous phenotypes. We have performed simulations to demonstrate only a negligible loss in power of this two-stage strategy, while minimizing the computational burden. Application of this interaction strategy to GWA studies of T2D and obesity highlights potential novel signals of association, which warrant follow-up in larger cohorts. Genet. Epidemiol. 2011.© 2011 Wiley Periodicals, Inc.35: 800-808, 2011
doi:10.1002/gepi.20629
PMCID: PMC3410530  PMID: 21948692
genome-wide association study; gene-gene interaction; computational efficiency
6.  Genomic inflation factors under polygenic inheritance 
Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome is used to assess such effects, and ‘genomic control' can be applied subsequently to adjust test statistics at individual loci by a genomic inflation factor. Published GWAS have clearly shown that there are many loci underlying genetic variation for a wide range of complex diseases and traits, implying that a substantial proportion of the genome should show inflation of the test statistic. Here, we show by theory, simulation and analysis of data that in the absence of population structure and other technical artefacts, but in the presence of polygenic inheritance, substantial genomic inflation is expected. Its magnitude depends on sample size, heritability, linkage disequilibrium structure and the number of causal variants. Our predictions are consistent with empirical observations on height in independent samples of ∼4000 and ∼133 000 individuals.
doi:10.1038/ejhg.2011.39
PMCID: PMC3137506  PMID: 21407268
genome-wide association study; genomic inflation factor; polygenic inheritance
7.  Association of Genetic Loci With Glucose Levels in Childhood and Adolescence 
Diabetes  2011;60(6):1805-1812.
OBJECTIVE
To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents.
RESEARCH DESIGN AND METHODS
A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9–16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose.
RESULTS
Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021–0.031) for each unit increase in the score.
CONCLUSIONS
Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards.
doi:10.2337/db10-1575
PMCID: PMC3114379  PMID: 21515849
8.  A Bivariate Genome-Wide Approach to Metabolic Syndrome 
Diabetes  2011;60(4):1329-1339.
OBJECTIVE
The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS.
RESEARCH DESIGN AND METHODS
Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected.
RESULTS
Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure.
CONCLUSIONS
Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
doi:10.2337/db10-1011
PMCID: PMC3064107  PMID: 21386085
9.  Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes 
Nature genetics  2011;43(6):561-564.
Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whilst cis-regulatory patterns of gene expression have been extensively explored, the identification of trans-regulatory effects in humans has attracted less attention. We demonstrate that the Type 2 diabetes and HDL-cholesterol associated cis-acting eQTL of the maternally-expressed transcription factor KLF14 acts as a master trans-regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly-correlated with concurrently-measured metabolic traits, and a subset of the trans-genes harbor variants directly-associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk, providing a potential model for other complex traits.
doi:10.1038/ng.833
PMCID: PMC3192952  PMID: 21572415
10.  MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven 
PLoS ONE  2011;6(11):e27338.
To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets.
doi:10.1371/journal.pone.0027338
PMCID: PMC3216936  PMID: 22102887
11.  Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus 
PLoS Genetics  2011;7(10):e1002341.
Systemic lupus erythematosus (SLE) is a complex trait characterised by the production of a range of auto-antibodies and a diverse set of clinical phenotypes. Currently, ∼8% of the genetic contribution to SLE in Europeans is known, following publication of several moderate-sized genome-wide (GW) association studies, which identified loci with a strong effect (OR>1.3). In order to identify additional genes contributing to SLE susceptibility, we conducted a replication study in a UK dataset (870 cases, 5,551 controls) of 23 variants that showed moderate-risk for lupus in previous studies. Association analysis in the UK dataset and subsequent meta-analysis with the published data identified five SLE susceptibility genes reaching genome-wide levels of significance (Pcomb<5×10−8): NCF2 (Pcomb = 2.87×10−11), IKZF1 (Pcomb = 2.33×10−9), IRF8 (Pcomb = 1.24×10−8), IFIH1 (Pcomb = 1.63×10−8), and TYK2 (Pcomb = 3.88×10−8). Each of the five new loci identified here can be mapped into interferon signalling pathways, which are known to play a key role in the pathogenesis of SLE. These results increase the number of established susceptibility genes for lupus to ∼30 and validate the importance of using large datasets to confirm associations of loci which moderately increase the risk for disease.
Author Summary
Genome-wide association studies have revolutionised our ability to identify common susceptibility alleles for systemic lupus erythematosus (SLE). In complex diseases such as SLE, where many different genes make a modest contribution to disease susceptibility, it is necessary to perform large-scale association studies to combine results from several datasets, to have sufficient power to identify highly significant novel loci (P<5×10−8). Using a large SLE collection of 870 UK SLE cases and 5,551 UK unaffected individuals, we firstly replicated ten moderate-risk alleles (P<0.05) from a US–Swedish study of 3,273 SLE cases and 12,188 healthy controls. Combining our results with the US-Swedish data identified five new loci, which crossed the level for genome-wide significance: NCF2 (neutrophil cytosolic factor 2), IKZF1 (Ikaros family zinc-finger 1), IRF8 (interferon regulatory factor 8), IFIH1 (interferon-induced helicase C domain-containing protein 1), and TYK2 (tyrosine kinase 2). Each of these five genes regulates a different aspect of the immune response and contributes to the production of type-I and type-II interferons. Although further studies will be required to identify the causal alleles within these loci, the confirmation of five new susceptibility genes for lupus makes a significant step forward in our understanding of the genetic contribution to SLE.
doi:10.1371/journal.pgen.1002341
PMCID: PMC3203198  PMID: 22046141
12.  A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci 
PLoS Genetics  2011;7(9):e1002293.
Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
Author Summary
Despite the fact that there is clearly a large genetic component to type 1 diabetes (T1D), uncovering the genes contributing to this disease has proven challenging. However, in the past three years there has been relatively major progress in this regard, with advances in genetic screening technologies allowing investigators to scan the genome for variants conferring risk for disease without prior hypotheses. Such genome-wide association studies have revealed multiple regions of the genome to be robustly and consistently associated with T1D. More recent findings have been a consequence of combining of multiple datasets from independent investigators in meta-analyses, which have more power to pick up additional variants contributing to the trait. In the current study, we describe the largest meta-analysis of T1D genome-wide genotyped datasets to date, which combines six large studies. As a consequence, we have uncovered three new signals residing at the chromosomal locations 13q22, 2p23, and 6q27, which went on to be replicated in independent sample sets. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
doi:10.1371/journal.pgen.1002293
PMCID: PMC3183083  PMID: 21980299
13.  A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection 
PLoS Genetics  2011;7(9):e1002270.
We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11
Author Summary
Physiological concentrations of metabolites—small molecules involved in biochemical processes in living systems—can be measured and used to diagnose and predict disease states. A common goal is to detect and clinically exploit statistical differences in metabolite concentrations between diseased and healthy individuals. As a basis for the design and interpretation of case-control studies, it is useful to have a characterization of metabolic diversity amongst healthy individuals, some of which stems from inter-individual genetic variation. When a single genetic locus has a sufficiently strong effect on metabolism, its genomic position can be determined by collecting metabolite concentration data and genome-wide genotype data on a set of individuals and searching for associations between the two data sets—a so-called metabolite quantitative trait locus (mQTL) study. By so tracing mQTLs, we can identify the genetic drivers of metabolism, characterize how the nature or quantity of the corresponding expressed protein(s) feeds forward to influence metabolite levels, and specify disease-predictive models that incorporate mutual dependence amongst genetics, environment, and metabolism.
doi:10.1371/journal.pgen.1002270
PMCID: PMC3169529  PMID: 21931564
A comprehensive variation map of the human metabolome identifies genetic and stable-environmental sources as major drivers of metabolite concentrations. The data suggest that sample sizes of a few thousand are sufficient to detect metabolite biomarkers predictive of disease.
We designed a longitudinal twin study to characterize the genetic, stable-environmental, and longitudinally fluctuating influences on metabolite concentrations in two human biofluids—urine and plasma—focusing specifically on the representative subset of metabolites detectable by 1H nuclear magnetic resonance (1H NMR) spectroscopy.We identified widespread genetic and stable-environmental influences on the (urine and plasma) metabolomes, with (30 and 42%) attributable on average to familial sources, and (47 and 60%) attributable to longitudinally stable sources.Ten of the metabolites annotated in the study are estimated to have >60% familial contribution to their variation in concentration.Our findings have implications for the design and interpretation of 1H NMR-based molecular epidemiology studies. On the basis of the stable component of variation quantified in the current paper, we specified a model of disease association under which we inferred that sample sizes of a few thousand should be sufficient to detect disease-predictive metabolite biomarkers.
Metabolites are small molecules involved in biochemical processes in living systems. Their concentration in biofluids, such as urine and plasma, can offer insights into the functional status of biological pathways within an organism, and reflect input from multiple levels of biological organization—genetic, epigenetic, transcriptomic, and proteomic—as well as from environmental and lifestyle factors. Metabolite levels have the potential to indicate a broad variety of deviations from the ‘normal' physiological state, such as those that accompany a disease, or an increased susceptibility to disease. A number of recent studies have demonstrated that metabolite concentrations can be used to diagnose disease states accurately. A more ambitious goal is to identify metabolite biomarkers that are predictive of future disease onset, providing the possibility of intervention in susceptible individuals.
If an extreme concentration of a metabolite is to serve as an indicator of disease status, it is usually important to know the distribution of metabolite levels among healthy individuals. It is also useful to characterize the sources of that observed variation in the healthy population. A proportion of that variation—the heritable component—is attributable to genetic differences between individuals, potentially at many genetic loci. An effective, molecular indicator of a heritable, complex disease is likely to have a substantive heritable component. Non-heritable biological variation in metabolite concentrations can arise from a variety of environmental influences, such as dietary intake, lifestyle choices, general physical condition, composition of gut microflora, and use of medication. Variation across a population in stable-environmental influences leads to long-term differences between individuals in their baseline metabolite levels. Dynamic environmental pressures lead to short-term fluctuations within an individual about their baseline level. A metabolite whose concentration changes substantially in response to short-term pressures is relatively unlikely to offer long-term prediction of disease. In summary, the potential suitability of a metabolite to predict disease is reflected by the relative contributions of heritable and stable/unstable-environmental factors to its variation in concentration across the healthy population.
Studies involving twins are an established technique for quantifying the heritable component of phenotypes in human populations. Monozygotic (MZ) twins share the same DNA genome-wide, while dizygotic (DZ) twins share approximately half their inherited DNA, as do ordinary siblings. By comparing the average extent of phenotypic concordance within MZ pairs to that within DZ pairs, it is possible to quantify the heritability of a trait, and also to quantify the familiality, which refers to the combination of heritable and common-environmental effects (i.e., environmental influences shared by twins in a pair). In addition to incorporating twins into the study design, it is useful to quantify the phenotype in some individuals at multiple time points. The longitudinal aspect of such a study allows environmental effects to be decomposed into those that affect the phenotype over the short term and those that exert stable influence.
For the current study, urine and blood samples were collected from a cohort of MZ and DZ twins, with some twins donating samples on two occasions several months apart. Samples were analysed by 1H nuclear magnetic resonance (1H NMR) spectroscopy—an untargeted, discovery-driven technique for quantifying metabolite concentrations in biological samples. The application of 1H NMR to a biological sample creates a spectrum, made up of multiple peaks, with each peak's size quantitatively representing the concentration of its corresponding hydrogen-containing metabolite.
In each biological sample in our study, we extracted a full set of peaks, and thereby quantified the concentrations of all common plasma and urine metabolites detectable by 1H NMR. We developed bespoke statistical methods to decompose the observed concentration variation at each metabolite peak into that originating from familial, individual-environmental, and unstable-environmental sources.
We quantified the variability landscape across all common metabolite peaks in the urine and plasma 1H NMR metabolomes. We annotated a subset of peaks with a total of 65 metabolites; the variance decompositions for these are shown in Figure 1. Ten metabolites' concentrations were estimated to have familial contributions in excess of 60%. The average proportion of stable variation across all extracted metabolite peaks was estimated to be 47% in the urine samples and 60% in the plasma samples; the average estimated familiality was 30% for urine and 42% for plasma. These results comprise the first quantitative variation map of the 1H NMR metabolome. The identification and quantification of substantive widespread stability provides support for the use of these biofluids in molecular epidemiology studies. On the basis of our findings, we performed power calculations for a hypothetical study searching for predictive disease biomarkers among 1H NMR-detectable urine and plasma metabolites. Our calculations suggest that sample sizes of 2000–5000 should allow reliable identification of disease-predictive metabolite concentrations explaining 5–10% of disease risk, while greater sample sizes of 5000–20 000 would be required to identify metabolite concentrations explaining 1–2% of disease risk.
1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non-identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common-environmental), individual-environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual-environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker-discovery studies. We provide a power-calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying predisposition to disease.
doi:10.1038/msb.2011.57
PMCID: PMC3202796  PMID: 21878913
biomarker; 1H nuclear magnetic resonance spectroscopy; metabolome-wide association study; top-down systems biology; variance decomposition
PLoS Genetics  2011;7(8):e1002215.
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8×10−4; Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8×10−10; Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation.
Author Summary
The combination of genomic and metabolic studies during the last years has provided astonishing results. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by sex. The investigation of 131 serum metabolite concentrations of >3,300 population-based samples (KORA F3/F4) revealed significant differences in the metabolite profile of males and females. Furthermore, a genome-wide picture of sex-specific genetic variations in human metabolism (>2,000 subjects from KORA F3/F4 cohorts) was investigated. Sex-specific genome-wide association studies (GWAS) showed differences in the effect of genetic variations on metabolites in men and women. SNPs in the CPS1 (carbamoyl-phosphate synthase 1) locus showed genome-wide significant differences in beta-estimates of sex-specific association analysis (significance level: 3.8×10−10) for glycine. As global metabolomic techniques are more and more refined to identify more compounds in single biological samples, the predictive power of this new technology will greatly increase. This suggests that metabolites, which may be used as predictive biomarkers to indicate the presence or severity of a disease, have to be used selectively depending on sex.
doi:10.1371/journal.pgen.1002215
PMCID: PMC3154959  PMID: 21852955
PLoS Genetics  2011;7(7):e1002177.
Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%–50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.
Author Summary
Genome-wide association studies (GWAS) have successfully identified genetic variants associated with complex human phenotypes. Despite a proliferation of analysis methods, most studies rely on simple, robust SNP–by–SNP univariate tests with ever-larger population sizes. Here we introduce a new test motivated by the biological hypothesis that a single gene may contain multiple variants that contribute independently to a trait. Applied to simulated phenotypes with real genotypes, our new method, Gene-Wide Significance (GWiS), has better power to identify true associations than traditional univariate methods, previous Bayesian methods, popular L1 regularized (LASSO) multivariate regression, and other approaches. GWiS retains power for low-frequency alleles that are increasingly important for personal genetics, and it is the only method tested that accurately estimates the number of independent effects within a gene. When applied to human data for multiple ECG traits, GWiS identifies more genome-wide significant loci (verified by meta-analyses of much larger populations) than any other method. We estimate that 35%–50% of ECG trait loci are likely to have multiple independent effects, suggesting that our method will reveal previously unidentified associations when applied to existing data and will improve power for future association studies.
doi:10.1371/journal.pgen.1002177
PMCID: PMC3145613  PMID: 21829371
PLoS Genetics  2011;7(7):e1002193.
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.
Author Summary
Circulating long-chain n-3 polyunsaturated fatty acids (PUFAs) derive from fatty fish or from the conversion of the plant n-3 PUFA by elongation and desaturation. We looked for common genetic markers throughout the genome that might influence plasma phospholipid levels of the four major n-3 PUFAs in five large studies and pooled the results. We found that levels of all four n-3 PUFAs were associated with genetic markers in known desaturation and elongation genes. We also found evidence that conversion of the plant n-3 PUFA to longer chain n-3 PUFAs is less effective in people with certain desaturation-gene markers, which could be important for people who do not eat fish. We also found a marker in a gene involved in glucose metabolism, called the glucokinase regulator, to be associated with one intermediate n-3 PUFA. Some of these findings were seen across multiple race/ethnicities. Overall, these results have implications for how genes and the environment interact to influence circulating levels of fatty acids.
doi:10.1371/journal.pgen.1002193
PMCID: PMC3145614  PMID: 21829377
PLoS Genetics  2011;7(7):e1002170.
Asthma is a complex phenotype influenced by genetic and environmental factors. We conducted a genome-wide association study (GWAS) with 938 Japanese pediatric asthma patients and 2,376 controls. Single-nucleotide polymorphisms (SNPs) showing strong associations (P<1×10−8) in GWAS were further genotyped in an independent Japanese samples (818 cases and 1,032 controls) and in Korean samples (835 cases and 421 controls). SNP rs987870, located between HLA-DPA1 and HLA-DPB1, was consistently associated with pediatric asthma in 3 independent populations (Pcombined = 2.3×10−10, odds ratio [OR] = 1.40). HLA-DP allele analysis showed that DPA1*0201 and DPB1*0901, which were in strong linkage disequilibrium, were strongly associated with pediatric asthma (DPA1*0201: P = 5.5×10−10, OR = 1.52, and DPB1*0901: P = 2.0×10−7, OR = 1.49). Our findings show that genetic variants in the HLA-DP locus are associated with the risk of pediatric asthma in Asian populations.
Author Summary
Asthma is the most common chronic disorder in children, and asthma exacerbation is an important cause of childhood morbidity and hospitalization. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for asthma. By examining 6,428 Asians, we found rs987870 and HLA-DPA1*0201/DPB1*0901 were associated with pediatric asthma. The association signal was stretched in the region of HLA-DPB2, collagen, type XI, alpha 2 (COL11A2), and Retinoid X receptor beta (RXRB), but strong linkage disequilibrium in this region made it difficult to specifically identify causative variants. Interestingly, the SNP (or the HLA-DP allele) associated with pediatric asthma (Th-2 type immune diseases) in the present study confers protection against Th-1 type immune diseases, such as type 1 diabetes and rheumatoid arthritis. Therefore, the association results obtained in the present study could partially explain the inverse relationship between asthma and Th-1 type immune diseases and may lead to better understanding of Th-1/Th-2 immune diseases.
doi:10.1371/journal.pgen.1002170
PMCID: PMC3140987  PMID: 21814517
PLoS Genetics  2011;7(7):e1002091.
Systemic sclerosis (SSc) is an orphan, complex, inflammatory disease affecting the immune system and connective tissue. SSc stands out as a severely incapacitating and life-threatening inflammatory rheumatic disease, with a largely unknown pathogenesis. We have designed a two-stage genome-wide association study of SSc using case-control samples from France, Italy, Germany, and Northern Europe. The initial genome-wide scan was conducted in a French post quality-control sample of 564 cases and 1,776 controls, using almost 500 K SNPs. Two SNPs from the MHC region, together with the 6 loci outside MHC having at least one SNP with a P<10−5 were selected for follow-up analysis. These markers were genotyped in a post-QC replication sample of 1,682 SSc cases and 3,926 controls. The three top SNPs are in strong linkage disequilibrium and located on 6p21, in the HLA-DQB1 gene: rs9275224, P = 9.18×10−8, OR = 0.69, 95% CI [0.60–0.79]; rs6457617, P = 1.14×10−7 and rs9275245, P = 1.39×10−7. Within the MHC region, the next most associated SNP (rs3130573, P = 1.86×10−5, OR = 1.36 [1.18–1.56]) is located in the PSORS1C1 gene. Outside the MHC region, our GWAS analysis revealed 7 top SNPs (P<10−5) that spanned 6 independent genomic regions. Follow-up of the 17 top SNPs in an independent sample of 1,682 SSc and 3,926 controls showed associations at PSORS1C1 (overall P = 5.70×10−10, OR:1.25), TNIP1 (P = 4.68×10−9, OR:1.31), and RHOB loci (P = 3.17×10−6, OR:1.21). Because of its biological relevance, and previous reports of genetic association at this locus with connective tissue disorders, we investigated TNIP1 expression. A markedly reduced expression of the TNIP1 gene and also its protein product were observed both in lesional skin tissue and in cultured dermal fibroblasts from SSc patients. Furthermore, TNIP1 showed in vitro inhibitory effects on inflammatory cytokine-induced collagen production. The genetic signal of association with TNIP1 variants, together with tissular and cellular investigations, suggests that this pathway has a critical role in regulating autoimmunity and SSc pathogenesis.
Author Summary
Systemic sclerosis (SSc) is a connective tissue disease characterized by generalized microangiopathy, severe immunologic alterations, and massive deposits of matrix components in the connective tissue. Epidemiological investigations indicate that SSc follows a pattern of multifactorial inheritance; however, only a few loci have been replicated in multiple studies. We undertook a two-stage genome-wide association study of SSc involving over 8,800 individuals of European ancestry. Combined analyses showed independent association at the known HLA-DQB1 region and revealed associations at PSORS1C1, TNIP1, and RHOB loci, in agreement with a strong immune genetic component. Because of its biological relevance, and previous reports of genetic association at this locus with other connective tissue disorders, we investigated TNIP1 expression. We observed a markedly reduced expression of the gene and its protein product in SSc, as well as its potential implication in control of extra-cellular matrix synthesis, providing a new clue for a link between inflammation/immunity and fibrosis.
doi:10.1371/journal.pgen.1002091
PMCID: PMC3131285  PMID: 21750679
PLoS Genetics  2011;7(6):e1002150.
Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9—a finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-value = 9.3E−7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 OR = 1.28), not in MYH9 E1 risk allele homozygotes (rs942280 OR = 0.80; homogeneity p-value = 4.3E−4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes.
Author Summary
African Americans have high rates of kidney disease attributed to type 2 diabetes mellitus. However, approximately 25% of patients are misclassified and have non-diabetic kidney disease on renal biopsy. The APOL1-MYH9 gene region on chromosome 22 is powerfully associated with non-diabetic kidney diseases in African Americans. Therefore, we tested for interactions between single nucleotide polymorphisms across the genome with APOL1 and MYH9 non-diabetic nephropathy risk variants in African Americans with presumed diabetic nephropathy. Markers in FRMD3, a gene associated with type 1 diabetic nephropathy in Caucasians, appeared to interact with MYH9; however, increased nephropathy risk was seen in diabetic cases lacking two MYH9 risk haplotypes, and protective effects were seen in those with two MYH9 risk haplotypes. Stratified analyses based on the chromosome 22 nephropathy risk haplotypes demonstrated that FRMD3 variants were associated with diabetic nephropathy risk in cases without two MYH9 (or APOL1) risk haplotypes. It appears that African Americans with diabetes and kidney disease who are not chromosome 22 nephropathy risk variant homozygotes are enriched for the presence of diabetic nephropathy and FRMD3 risk alleles. This genetic dissection ultimately allowed for detection of the FRMD3 diabetic nephropathy gene association in a subset of cases enriched for this disorder.
doi:10.1371/journal.pgen.1002150
PMCID: PMC3116917  PMID: 21698141
PLoS Genetics  2011;7(3):e1001324.
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Author Summary
NAFLD is a spectrum of disease that ranges from steatosis to steatohepatitis (nonalcoholic steatohepatitis or NASH: inflammation around the fat) to fibrosis/cirrhosis. Hepatic steatosis can be measured non-invasively using computed tomography (CT) whereas NASH/fibrosis is assessed histologically. The genetic underpinnings of NAFLD remain to be determined. Here we estimate that 26%–27% of the variation in CT measured hepatic steatosis is heritable or genetic. We identify three variants near PNPLAL3, NCAN, and PPP1R3B that associate with CT hepatic steatosis and show that variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B, associate with histologic lobular inflammation/fibrosis. Variants in or near NCAN, GCKR, and PPP1R3B associate with altered serum lipid levels, whereas those in or near LYPLAL1 and PNPLA3 do not. Variants near GCKR and PPP1R3B also affect glycemic traits. Thus, we show that NAFLD is genetically influenced and expand the number of common genetic variants that associate with this trait. Our findings suggest that development of hepatic steatosis, NASH/fibrosis, or abnormalities in metabolic traits are probably influenced by different metabolic pathways that may represent distinct therapeutic targets.
doi:10.1371/journal.pgen.1001324
PMCID: PMC3053321  PMID: 21423719
PLoS Genetics  2011;7(2):e1001311.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility polymorphisms with previous genome-wide evidence of association (p<5×10−8) in 1919 SLE cases from 9 independent Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while the mean in controls was 13.1 (SD 2.8), with trend p = 4×10−128. We defined a genetic risk score (GRS) for SLE as the number of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria, and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS, most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e−9), the immunologic criterion (ORhigh-low = 2.23, p = 3e−7), and age at diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with respect to the currently established SLE risk loci.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one's risk for lupus but do not fully determine the outcome. The interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between the presence of multiple lupus risk genes, lupus susceptibility, and clinical manifestations, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that certain clinical manifestations of lupus are highly associated with cumulative genetic variations, i.e. multiple risk alleles, while others are associated with a single variation or none at all.
doi:10.1371/journal.pgen.1001311
PMCID: PMC3040652  PMID: 21379322
PLoS Genetics  2011;7(2):e1001307.
An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10−20) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10−23). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (−0.40% (95% CI: −0.74, −0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (−4.72% (−5.81, −3.63), p = 10−17), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.
Author Summary
Variation at the FTO locus is reliably associated with BMI and adiposity-related traits, but little is still known about the effects of variation at this gene, particularly in children. We have examined a large collection of samples for which both genotypes at rs9939609 and multiple measurements of BMI are available. We observe a positive association between the minor allele (A) at rs9939609 and BMI emerging in childhood that has the characteristics of a shift in the age scale leading simultaneously to lower BMI during infancy and higher BMI in childhood. Assessed in cross section and longitudinally, we find evidence of variation at rs9939609 being associated with the timing of AR and the concert of events expected with such a change to the BMI curve. Importantly, the apparently negative association between the minor allele (A) and BMI in early life, which is then followed by an earlier AR and greater BMI in childhood, is a pattern known to be associated with both the risk of adult BMI and metabolic disorders such as type 2 diabetes (T2D). These findings are important in our understanding of the contribution of FTO to adiposity, but also in light of efforts to appreciate genetic effects in a lifecourse context.
doi:10.1371/journal.pgen.1001307
PMCID: PMC3040655  PMID: 21379325
PLoS Genetics  2011;7(2):e1002003.
While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
Author Summary
Regulation of gene expression is a fundamental cellular process determining a large proportion of the phenotypic variance. Previous studies have identified genetic loci influencing gene expression levels (eQTLs), but the complexity of their tissue-specific properties has not yet been well-characterized. In this study, we perform cis-eQTL analysis in a unique matched co-twin design for three human tissues derived simultaneously from the same set of individuals. The study design allows validation of the substantial discoveries we make in each tissue. We explore in depth the tissue-dependent features of regulatory variants and estimate the proportions of shared and specific effects. We use continuous measures of eQTL sharing to circumvent the statistical power limitations of comparing direct overlap of eQTLs in multiple tissues. In this framework, we demonstrate that 30% of eQTLs are shared among tissues, while 29% are exclusively tissue-specific. Furthermore, we show that the fold change in expression between eQTL genotypic classes differs between tissues. Even among shared eQTLs, we report a substantial proportion (10%–20%) of significant tissue differences in magnitude of these effects. The complexities we highlight here are essential for understanding the impact of regulatory variants on complex traits.
doi:10.1371/journal.pgen.1002003
PMCID: PMC3033383  PMID: 21304890

Results 1-24 (24)