PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None
Journals
more »
Year of Publication
Document Types
1.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
2.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segrè, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian'an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John RB | Platou, Carl GP | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden89-, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
3.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segré, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian’an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John R B | Platou, Carl G P | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
4.  Variants in MTNR1B influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J F | Manning, Alisa K | Jackson, Anne U | Aulchenko, Yurii | Potter, Simon C | Erdos, Michael R | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S | Bergman, Richard N | Bochud, Murielle | Bonnycastle, Lori L | Buchanan, Thomas A | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S | Crisponi, Laura | de Geus, Eco J C | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M | McCann, Owen T | Mohlke, Karen L | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G | Voight, Benjamin F | Waterworth, Dawn | Wichmann, H-Erich | Willemsen, Gonneke | Witteman, Jacqueline C M | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S | Peltonen, Leena | Groop, Leif C | Mooser, Vincent | Cupples, L Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M | Stefansson, Kari | McCarthy, Mark I | Wareham, Nicholas J | Meigs, James B | Abecasis, Gonçalo R
Nature genetics  2008;41(1):77-81.
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 = × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
5.  Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes 
Annals of human genetics  2010;75(1):10-19.
Summary
In the presence of epistasis multilocus association tests of human complex traits can provide powerful methods to detect susceptibility variants. We undertook multilocus analyses in 1924 type 2 diabetes cases and 2938 controls from the Wellcome Trust Case Control Consortium (WTCCC). We performed a two-dimensional genome-wide association (GWA) scan using joint two-locus tests of association including main and epistatic effects in 70,236 markers tagging common variants. We found two-locus association at 79 SNP-pairs at a Bonferroni-corrected P-value = 0.05 (uncorrected P-value = 2.14 × 10−11). The 79 pair-wise results always contained rs11196205 in TCF7L2 paired with 79 variants including confirmed variants in FTO, TSPAN8, and CDKAL1, which are associated in the absence of epistasis. However, the majority (82%) of the 79 variants did not have compelling single-locus association signals (P-value = 5 × 10−4). Analyses conditional on the single-locus effects at TCF7L2 established that the joint two-locus results could be attributed to single-locus association at TCF7L2 alone. Interaction analyses among the peak 80 regions and among 23 previously established diabetes candidate genes identified five SNP-pairs with case-control and case-only epistatic signals. Our results demonstrate the feasibility of systematic scans in GWA data, but confirm that single-locus association can underlie and obscure multilocus findings.
doi:10.1111/j.1469-1809.2010.00629.x
PMCID: PMC3430851  PMID: 21133856
Epistasis; simultaneous search; joint effects; genome-wide association
6.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data 
Diabetes  2009;58(2):505-510.
OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.
RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.
RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66], P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15]; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04).
CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
doi:10.2337/db08-0906
PMCID: PMC2628627  PMID: 19056611
7.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes 
Zeggini, Eleftheria | Scott, Laura J. | Saxena, Richa | Voight, Benjamin F. | Marchini, Jonathan L | Hu, Tainle | de Bakker, Paul IW | Abecasis, Gonçalo R | Almgren, Peter | Andersen, Gitte | Ardlie, Kristin | Boström, Kristina Bengtsson | Bergman, Richard N | Bonnycastle, Lori L | Borch-Johnsen, Knut | Burtt, Noël P | Chen, Hong | Chines, Peter S | Daly, Mark J | Deodhar, Parimal | Ding, Charles | Doney, Alex S F | Duren, William L | Elliott, Katherine S | Erdos, Michael R | Frayling, Timothy M | Freathy, Rachel M | Gianniny, Lauren | Grallert, Harald | Grarup, Niels | Groves, Christopher J | Guiducci, Candace | Hansen, Torben | Herder, Christian | Hitman, Graham A | Hughes, Thomas E | Isomaa, Bo | Jackson, Anne U | Jørgensen, Torben | Kong, Augustine | Kubalanza, Kari | Kuruvilla, Finny G | Kuusisto, Johanna | Langenberg, Claudia | Lango, Hana | Lauritzen, Torsten | Li, Yun | Lindgren, Cecilia M | Lyssenko, Valeriya | Marvelle, Amanda F | Meisinger, Christa | Midthjell, Kristian | Mohlke, Karen L | Morken, Mario A | Morris, Andrew D | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Palmer, Colin NA | Payne, Felicity | Perry, John RB | Pettersen, Elin | Platou, Carl | Prokopenko, Inga | Qi, Lu | Qin, Li | Rayner, Nigel W | Rees, Matthew | Roix, Jeffrey J | Sandbæk, Anelli | Shields, Beverley | Sjögren, Marketa | Steinthorsdottir, Valgerdur | Stringham, Heather M | Swift, Amy J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Timpson, Nicholas J | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Walker, Mark | Watanabe, Richard M | Weedon, Michael N | Willer, Cristen J | Illig, Thomas | Hveem, Kristian | Hu, Frank B | Laakso, Markku | Stefansson, Kari | Pedersen, Oluf | Wareham, Nicholas J | Barroso, Inês | Hattersley, Andrew T | Collins, Francis S | Groop, Leif | McCarthy, Mark I | Boehnke, Michael | Altshuler, David
Nature genetics  2008;40(5):638-645.
Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10−14), CDC123/CAMK1D (p=1.2×10−10), TSPAN8/LGR5 (p=1.1×10−9), THADA (p=1.1×10−9), ADAMTS9 (p=1.2×10−8), and NOTCH2 (p=4.1×10−8) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D.
doi:10.1038/ng.120
PMCID: PMC2672416  PMID: 18372903
9.  A common variant of HMGA2 is associated with adult and childhood height in the general population 
Nature genetics  2007;39(10):1245-1250.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 × 10−8). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 × 10−11, overall P = 4 × 10−16, including the genome-wide association data). We also observed the association in children (P = 1 × 10−6, N = 6,827) and a tall/short case-control study (P = 4 × 10−6, N = 3,207). We estimate that rs1042725 explains ~0.3% of population variation in height (~0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitative traits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.
doi:10.1038/ng2121
PMCID: PMC3086278  PMID: 17767157
10.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis 
Voight, Benjamin F | Scott, Laura J | Steinthorsdottir, Valgerdur | Morris, Andrew P | Dina, Christian | Welch, Ryan P | Zeggini, Eleftheria | Huth, Cornelia | Aulchenko, Yurii S | Thorleifsson, Gudmar | McCulloch, Laura J | Ferreira, Teresa | Grallert, Harald | Amin, Najaf | Wu, Guanming | Willer, Cristen J | Raychaudhuri, Soumya | McCarroll, Steve A | Langenberg, Claudia | Hofmann, Oliver M | Dupuis, Josée | Qi, Lu | Segrè, Ayellet V | van Hoek, Mandy | Navarro, Pau | Ardlie, Kristin | Balkau, Beverley | Benediktsson, Rafn | Bennett, Amanda J | Blagieva, Roza | Boerwinkle, Eric | Bonnycastle, Lori L | Boström, Kristina Bengtsson | Bravenboer, Bert | Bumpstead, Suzannah | Burtt, Noisël P | Charpentier, Guillaume | Chines, Peter S | Cornelis, Marilyn | Couper, David J | Crawford, Gabe | Doney, Alex S F | Elliott, Katherine S | Elliott, Amanda L | Erdos, Michael R | Fox, Caroline S | Franklin, Christopher S | Ganser, Martha | Gieger, Christian | Grarup, Niels | Green, Todd | Griffin, Simon | Groves, Christopher J | Guiducci, Candace | Hadjadj, Samy | Hassanali, Neelam | Herder, Christian | Isomaa, Bo | Jackson, Anne U | Johnson, Paul R V | Jørgensen, Torben | Kao, Wen H L | Klopp, Norman | Kong, Augustine | Kraft, Peter | Kuusisto, Johanna | Lauritzen, Torsten | Li, Man | Lieverse, Aloysius | Lindgren, Cecilia M | Lyssenko, Valeriya | Marre, Michel | Meitinger, Thomas | Midthjell, Kristian | Morken, Mario A | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Payne, Felicity | Perry, John R B | Petersen, Ann-Kristin | Platou, Carl | Proença, Christine | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, N William | Robertson, Neil R | Rocheleau, Ghislain | Roden, Michael | Sampson, Michael J | Saxena, Richa | Shields, Beverley M | Shrader, Peter | Sigurdsson, Gunnar | Sparsø, Thomas | Strassburger, Klaus | Stringham, Heather M | Sun, Qi | Swift, Amy J | Thorand, Barbara | Tichet, Jean | Tuomi, Tiinamaija | van Dam, Rob M | van Haeften, Timon W | van Herpt, Thijs | van Vliet-Ostaptchouk, Jana V | Walters, G Bragi | Weedon, Michael N | Wijmenga, Cisca | Witteman, Jacqueline | Bergman, Richard N | Cauchi, Stephane | Collins, Francis S | Gloyn, Anna L | Gyllensten, Ulf | Hansen, Torben | Hide, Winston A | Hitman, Graham A | Hofman, Albert | Hunter, David J | Hveem, Kristian | Laakso, Markku | Mohlke, Karen L | Morris, Andrew D | Palmer, Colin N A | Pramstaller, Peter P | Rudan, Igor | Sijbrands, Eric | Stein, Lincoln D | Tuomilehto, Jaakko | Uitterlinden, Andre | Walker, Mark | Wareham, Nicholas J | Watanabe, Richard M | Abecasis, Gonçalo R | Boehm, Bernhard O | Campbell, Harry | Daly, Mark J | Hattersley, Andrew T | Hu, Frank B | Meigs, James B | Pankow, James S | Pedersen, Oluf | Wichmann, H-Erich | Barroso, Inês | Florez, Jose C | Frayling, Timothy M | Groop, Leif | Sladek, Rob | Thorsteinsdottir, Unnur | Wilson, James F | Illig, Thomas | Froguel, Philippe | van Duijn, Cornelia M | Stefansson, Kari | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2010;42(7):579-589.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
doi:10.1038/ng.609
PMCID: PMC3080658  PMID: 20581827
11.  Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI 
Diabetes  2008;57(5):1419-1426.
OBJECTIVE
Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits.
RESEARCH DESIGN AND METHODS
We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations.
RESULTS
Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001– 0.048]; P = 0.044), and triglycerides (0.028 [0.003– 0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008 – 0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10 –1.25]; P = 3 × 10−6).
CONCLUSIONS
FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
doi:10.2337/db07-1466
PMCID: PMC3073395  PMID: 18346983
12.  Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany 
The association between common variants in the FTO gene with weight, adiposity and body mass index (BMI) has now been widely replicated. Although the causal variant has yet to be identified, it most likely maps within a 47 kb region of intron 1 of FTO. We performed a genome-wide association study in the Sorbian population and evaluated the relationships between FTO variants and BMI and fat mass in this isolate of Slavonic origin resident in Germany. In a sample of 948 Sorbs, we could replicate the earlier reported associations of intron 1 SNPs with BMI (eg, P-value=0.003, β=0.02 for rs8050136). However, using genome-wide association data, we also detected a second independent signal mapping to a region in intron 2/3 about 40–60 kb away from the originally reported SNPs (eg, for rs17818902 association with BMI P-value=0.0006, β=−0.03 and with fat mass P-value=0.0018, β=−0.079). Both signals remain independently associated in the conditioned analyses. In conclusion, we extend the evidence that FTO variants are associated with BMI by putatively identifying a second susceptibility allele independent of that described earlier. Although further statistical analysis of these findings is hampered by the finite size of the Sorbian isolate, these findings should encourage other groups to seek alternative susceptibility variants within FTO (and other established susceptibility loci) using the opportunities afforded by analyses in populations with divergent mutational and/or demographic histories.
doi:10.1038/ejhg.2009.107
PMCID: PMC2987177  PMID: 19584900
FTO; BMI; Sorbs
13.  Eight blood pressure loci identified by genome-wide association study of 34,433 people of European ancestry 
Newton-Cheh, Christopher | Johnson, Toby | Gateva, Vesela | Tobin, Martin D | Bochud, Murielle | Coin, Lachlan | Najjar, Samer S | Zhao, Jing Hua | Heath, Simon C | Eyheramendy, Susana | Papadakis, Konstantinos | Voight, Benjamin F | Scott, Laura J | Zhang, Feng | Farrall, Martin | Tanaka, Toshiko | Wallace, Chris | Chambers, John C | Khaw, Kay-Tee | Nilsson, Peter | van der Harst, Pim | Polidoro, Silvia | Grobbee, Diederick E | Onland-Moret, N Charlotte | Bots, Michiel L | Wain, Louise V | Elliott, Katherine S | Teumer, Alexander | Luan, Jian’an | Lucas, Gavin | Kuusisto, Johanna | Burton, Paul R | Hadley, David | McArdle, Wendy L | Brown, Morris | Dominiczak, Anna | Newhouse, Stephen J | Samani, Nilesh J | Webster, John | Zeggini, Eleftheria | Beckmann, Jacques S | Bergmann, Sven | Lim, Noha | Song, Kijoung | Vollenweider, Peter | Waeber, Gerard | Waterworth, Dawn M | Yuan, Xin | Groop, Leif | Orho-Melander, Marju | Allione, Alessandra | Di Gregorio, Alessandra | Guarrera, Simonetta | Panico, Salvatore | Ricceri, Fulvio | Romanazzi, Valeria | Sacerdote, Carlotta | Vineis, Paolo | Barroso, Inês | Sandhu, Manjinder S | Luben, Robert N | Crawford, Gabriel J. | Jousilahti, Pekka | Perola, Markus | Boehnke, Michael | Bonnycastle, Lori L | Collins, Francis S | Jackson, Anne U | Mohlke, Karen L | Stringham, Heather M | Valle, Timo T | Willer, Cristen J | Bergman, Richard N | Morken, Mario A | Döring, Angela | Gieger, Christian | Illig, Thomas | Meitinger, Thomas | Org, Elin | Pfeufer, Arne | Wichmann, H Erich | Kathiresan, Sekar | Marrugat, Jaume | O’Donnell, Christopher J | Schwartz, Stephen M | Siscovick, David S | Subirana, Isaac | Freimer, Nelson B | Hartikainen, Anna-Liisa | McCarthy, Mark I | O’Reilly, Paul F | Peltonen, Leena | Pouta, Anneli | de Jong, Paul E | Snieder, Harold | van Gilst, Wiek H | Clarke, Robert | Goel, Anuj | Hamsten, Anders | Peden, John F | Seedorf, Udo | Syvänen, Ann-Christine | Tognoni, Giovanni | Lakatta, Edward G | Sanna, Serena | Scheet, Paul | Schlessinger, David | Scuteri, Angelo | Dörr, Marcus | Ernst, Florian | Felix, Stephan B | Homuth, Georg | Lorbeer, Roberto | Reffelmann, Thorsten | Rettig, Rainer | Völker, Uwe | Galan, Pilar | Gut, Ivo G | Hercberg, Serge | Lathrop, G Mark | Zeleneka, Diana | Deloukas, Panos | Soranzo, Nicole | Williams, Frances M | Zhai, Guangju | Salomaa, Veikko | Laakso, Markku | Elosua, Roberto | Forouhi, Nita G | Völzke, Henry | Uiterwaal, Cuno S | van der Schouw, Yvonne T | Numans, Mattijs E | Matullo, Giuseppe | Navis, Gerjan | Berglund, Göran | Bingham, Sheila A | Kooner, Jaspal S | Paterson, Andrew D | Connell, John M | Bandinelli, Stefania | Ferrucci, Luigi | Watkins, Hugh | Spector, Tim D | Tuomilehto, Jaakko | Altshuler, David | Strachan, David P | Laan, Maris | Meneton, Pierre | Wareham, Nicholas J | Uda, Manuela | Jarvelin, Marjo-Riitta | Mooser, Vincent | Melander, Olle | Loos, Ruth JF | Elliott, Paul | Abecasis, Goncalo R | Caulfield, Mark | Munroe, Patricia B
Nature genetics  2009;41(6):666-676.
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5m genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N≤71,225 European ancestry, N=12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N=29,136). We identified association between systolic or diastolic blood pressure and common variants in 8 regions near the CYP17A1 (P=7×10−24), CYP1A2 (P=1×10−23), FGF5 (P=1×10−21), SH2B3 (P=3×10−18), MTHFR (P=2×10−13), c10orf107 (P=1×10−9), ZNF652 (P=5×10−9) and PLCD3 (P=1×10−8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
doi:10.1038/ng.361
PMCID: PMC2891673  PMID: 19430483
14.  Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations 
American Journal of Epidemiology  2009;170(5):537-545.
For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
Bayes theorem; diabetes mellitus, type 2; meta-analysis; models, genetic; polymorphism, genetic; population characteristics
15.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge 
Saxena, Richa | Hivert, Marie-France | Langenberg, Claudia | Tanaka, Toshiko | Pankow, James S | Vollenweider, Peter | Lyssenko, Valeriya | Bouatia-Naji, Nabila | Dupuis, Josée | Jackson, Anne U | Kao, W H Linda | Li, Man | Glazer, Nicole L | Manning, Alisa K | Luan, Jian’an | Stringham, Heather M | Prokopenko, Inga | Johnson, Toby | Grarup, Niels | Boesgaard, Trine W | Lecoeur, Cécile | Shrader, Peter | O’Connell, Jeffrey | Ingelsson, Erik | Couper, David J | Rice, Kenneth | Song, Kijoung | Andreasen, Camilla H | Dina, Christian | Köttgen, Anna | Le Bacquer, Olivier | Pattou, François | Taneera, Jalal | Steinthorsdottir, Valgerdur | Rybin, Denis | Ardlie, Kristin | Sampson, Michael | Qi, Lu | van Hoek, Mandy | Weedon, Michael N | Aulchenko, Yurii S | Voight, Benjamin F | Grallert, Harald | Balkau, Beverley | Bergman, Richard N | Bielinski, Suzette J | Bonnefond, Amelie | Bonnycastle, Lori L | Borch-Johnsen, Knut | Böttcher, Yvonne | Brunner, Eric | Buchanan, Thomas A | Bumpstead, Suzannah J | Cavalcanti-Proença, Christine | Charpentier, Guillaume | Chen, Yii-Der Ida | Chines, Peter S | Collins, Francis S | Cornelis, Marilyn | Crawford, Gabriel J | Delplanque, Jerome | Doney, Alex | Egan, Josephine M | Erdos, Michael R | Firmann, Mathieu | Forouhi, Nita G | Fox, Caroline S | Goodarzi, Mark O | Graessler, Jürgen | Hingorani, Aroon | Isomaa, Bo | Jørgensen, Torben | Kivimaki, Mika | Kovacs, Peter | Krohn, Knut | Kumari, Meena | Lauritzen, Torsten | Lévy-Marchal, Claire | Mayor, Vladimir | McAteer, Jarred B | Meyre, David | Mitchell, Braxton D | Mohlke, Karen L | Morken, Mario A | Narisu, Narisu | Palmer, Colin N A | Pakyz, Ruth | Pascoe, Laura | Payne, Felicity | Pearson, Daniel | Rathmann, Wolfgang | Sandbaek, Annelli | Sayer, Avan Aihie | Scott, Laura J | Sharp, Stephen J | Sijbrands, Eric | Singleton, Andrew | Siscovick, David S | Smith, Nicholas L | Sparsø, Thomas | Swift, Amy J | Syddall, Holly | Thorleifsson, Gudmar | Tönjes, Anke | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Valle, Timo T | Waeber, Gérard | Walley, Andrew | Waterworth, Dawn M | Zeggini, Eleftheria | Zhao, Jing Hua | Illig, Thomas | Wichmann, H Erich | Wilson, James F | van Duijn, Cornelia | Hu, Frank B | Morris, Andrew D | Frayling, Timothy M | Hattersley, Andrew T | Thorsteinsdottir, Unnur | Stefansson, Kari | Nilsson, Peter | Syvänen, Ann-Christine | Shuldiner, Alan R | Walker, Mark | Bornstein, Stefan R | Schwarz, Peter | Williams, Gordon H | Nathan, David M | Kuusisto, Johanna | Laakso, Markku | Cooper, Cyrus | Marmot, Michael | Ferrucci, Luigi | Mooser, Vincent | Stumvoll, Michael | Loos, Ruth J F | Altshuler, David | Psaty, Bruce M | Rotter, Jerome I | Boerwinkle, Eric | Hansen, Torben | Pedersen, Oluf | Florez, Jose C | McCarthy, Mark I | Boehnke, Michael | Barroso, Inês | Sladek, Robert | Froguel, Philippe | Meigs, James B | Groop, Leif | Wareham, Nicholas J | Watanabe, Richard M
Nature genetics  2010;42(2):142-148.
Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
doi:10.1038/ng.521
PMCID: PMC2922003  PMID: 20081857
16.  Linkage Disequilibrium Mapping of the Replicated Type 2 Diabetes Linkage Signal on Chromosome 1q 
Diabetes  2009;58(7):1704-1709.
OBJECTIVE
Linkage of the chromosome 1q21–25 region to type 2 diabetes has been demonstrated in multiple ethnic groups. We performed common variant fine-mapping across a 23-Mb interval in a multiethnic sample to search for variants responsible for this linkage signal.
RESEARCH DESIGN AND METHODS
In all, 5,290 single nucleotide polymorphisms (SNPs) were successfully genotyped in 3,179 type 2 diabetes case and control subjects from eight populations with evidence of 1q linkage. Samples were ascertained using strategies designed to enhance power to detect variants causal for 1q linkage. After imputation, we estimate ∼80% coverage of common variation across the region (r 2 > 0.8, Europeans). Association signals of interest were evaluated through in silico replication and de novo genotyping in ∼8,500 case subjects and 12,400 control subjects.
RESULTS
Association mapping of the 23-Mb region identified two strong signals, both of which were restricted to the subset of European-descent samples. The first mapped to the NOS1AP (CAPON) gene region (lead SNP: rs7538490, odds ratio 1.38 [95% CI 1.21–1.57], P = 1.4 × 10−6, in 999 case subjects and 1,190 control subjects); the second mapped within an extensive region of linkage disequilibrium that includes the ASH1L and PKLR genes (lead SNP: rs11264371, odds ratio 1.48 [1.18–1.76], P = 1.0 × 10−5, under a dominant model). However, there was no evidence for association at either signal on replication, and, across all data (>24,000 subjects), there was no indication that these variants were causally related to type 2 diabetes status.
CONCLUSIONS
Detailed fine-mapping of the 23-Mb region of replicated linkage has failed to identify common variant signals contributing to the observed signal. Future studies should focus on identification of causal alleles of lower frequency and higher penetrance.
doi:10.2337/db09-0081
PMCID: PMC2699860  PMID: 19389826
17.  Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth 
Diabetes  2009;58(6):1428-1433.
OBJECTIVE
Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight.
RESEARCH DESIGN AND METHODS
We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring.
RESULTS
We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11–31], P = 2 × 10−5, and 14 g [4–23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39–120) lighter at birth than the 8% carrying none (Ptrend = 5 × 10−7). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus.
CONCLUSIONS
Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
doi:10.2337/db08-1739
PMCID: PMC2682672  PMID: 19228808
18.  Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach 
Diabetes  2009;58(6):1463-1467.
OBJECTIVE
Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.
RESEARCH DESIGN AND METHODS
We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.
RESULTS
After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top Padj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.
CONCLUSIONS
Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
doi:10.2337/db08-1378
PMCID: PMC2682674  PMID: 19252133
19.  Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies 
PLoS ONE  2010;5(5):e10858.
Background
Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer risk in general versus a specific effect on prostate cancer only.
Methodology/Principal Findings
In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the frequently reported variants of HNF1B, rs4430796 and rs7501939, which are in linkage disequilibrium (r2 = 0.76, HapMap CEU). Overall, the analysis included 16 datasets on rs4430796 with 19,640 cancer cases and 21,929 controls; and 21 datasets on rs7501939 with 26,923 cases and 49,085 controls. Malignancies other than prostate cancer included colorectal, breast, lung and pancreatic cancers, and melanoma. Meta-analysis showed large between-dataset heterogeneity that was driven by different effects in prostate cancer and other cancers. The per-T2D-risk-allele odds ratios (95% confidence intervals) for rs4430796 were 0.79 (0.76, 0.83)] per G allele for prostate cancer (p<10−15 for both); and 1.03 (0.99, 1.07) for all other cancers. Similarly for rs7501939 the per-T2D-risk-allele odds ratios (95% confidence intervals) were 0.80 (0.77, 0.83) per T allele for prostate cancer (p<10−15 for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate cancer had a nominally statistically significant association.
Conclusions/Significance
The examined HNF1B variants have a highly specific effect on prostate cancer risk with no apparent association with any of the other studied cancer types.
doi:10.1371/journal.pone.0010858
PMCID: PMC2878330  PMID: 20526366
20.  Underlying genetic models of inheritance in established type 2 diabetes associations 
American journal of epidemiology  2009;170(5):537-545.
For most associations of common polymorphisms with common diseases, the genetic model of inheritance is unknown. We extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations for type 2 diabetes. For 13 polymorphisms, the data fit very well to an additive model, for 4 polymorphisms the data were consistent with either an additive or dominant model, and for 2 polymorphisms with an additive or recessive model of inheritance for the diabetes risk allele. Results were robust to using different priors and after excluding data where index polymorphisms had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that are very similar to those previously reported based on fixed or random effects models, but uncertainty about several of the effects was substantially larger. We also examined the extent of between-study heterogeneity in the genetic model and found generally small values of the between-study deviation for the genetic model parameter. Heterosis could not be excluded in 4 SNPs. Information on the genetic model of robustly replicated GWA-derived association signals may be useful for predictive modeling, and for designing biological and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
21.  Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes 
BMC Medical Genetics  2010;11:69.
Background
The TNF/LTA locus has been a long-standing T2D candidate gene. Several studies have examined association of TNF/LTA SNPs with T2D but the majority have been small-scale and produced no convincing evidence of association. The purpose of this study is to examine T2D association of tag SNPs in the TNF/LTA region capturing the majority of common variation in a large-scale sample set of UK/Irish origin.
Methods
This study comprised a case-control (1520 cases and 2570 control samples) and a family-based component (423 parent-offspring trios). Eleven tag SNPs (rs928815, rs909253, rs746868, rs1041981 (T60N), rs1800750, rs1800629 (G-308A), rs361525 (G-238A), rs3093662, rs3093664, rs3093665, and rs3093668) were selected across the TNF/LTA locus and genotyped using a fluorescence-based competitive allele specific assay. Quality control of the obtained genotypes was performed prior to single- and multi-point association analyses under the additive model.
Results
We did not find any consistent SNP associations with T2D in the case-control or family-based datasets.
Conclusions
The present study, designed to analyse a set of tag SNPs specifically selected to capture the majority of common variation in the TNF/LTA gene region, found no robust evidence for association with T2D. To investigate the presence of smaller effects of TNF/LTA gene variation with T2D, a large-scale meta-analysis will be required.
doi:10.1186/1471-2350-11-69
PMCID: PMC2873325  PMID: 20459604
22.  Variants in the melatonin receptor 1B gene (MTNR1B) influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C. | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J.F. | Manning, Alisa K. | Jackson, Anne U. | Aulchenko, Yurii | Potter, Simon C. | Erdos, Michael R. | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S. | Bergman, Richard N. | Bochud, Murielle | Bonnycastle, Lori L. | Buchanan, Thomas A. | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S. | Crisponi, Laura | de Geus, Eco JC | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E. | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M. | McCann, Owen T. | Mohlke, Karen L. | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J. | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H. | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M. | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G. | Voight, Benjamin F. | Waterworth, Dawn | Wichmann, H.-Erich | Willemsen, Gonneke | Witteman, Jacqueline CM | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D. | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S. | Peltonen, Leena | Groop, Leif C. | Mooser, Vincent | Cupples, L. Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M. | Stefansson, Kari | McCarthy, Mark I. | Wareham, Nicholas J. | Meigs, James B. | Abecasis, Goncalo R.
Nature genetics  2008;41(1):77-81.
To identify novel genetic loci associated with fasting glucose concentrations, we examined the leading association signals in 10 genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding the melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G-allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95%CI 0.06–0.08) mmol/L in fasting glucose levels (P=3.2×10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P=1.1×10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05–1.12), per G allele P=3.3×10−7) in a meta-analysis of thirteen case-control studies totalling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P=1.1×10−57) and GCK (rs4607517, P=1.0×10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
23.  Linkage disequilibrium mapping of the replicated type 2 diabetes linkage signal on chromosome 1q 
Diabetes  2009;58(7):1704-1709.
Objective
Linkage of the chromosome 1q21-25 region to type 2 diabetes has been demonstrated in multiple ethnic groups. We performed common variant fine-mapping across a 23Mb interval in a multiethnic sample to search for variants responsible for this linkage signal.
Research Design and Methods
In all, 5,290 SNPs were successfully genotyped in 3,179 T2D cases and controls from eight populations with evidence of 1q linkage. Samples were ascertained using strategies designed to enhance power to detect variants causal for 1q-linkage. Following imputation, we estimate ~80% coverage of common variation across the region (r2>0.8, Europeans). Association signals of interest were evaluated through in silico replication and de novo genotyping in approximately 8,500 cases and 12,400 controls.
Results
Association mapping of the 23Mb region identified two strong signals, both restricted to the subset of European-descent samples. The first mapped to the NOS1AP (CAPON) gene region (lead SNP: rs7538490, OR 1.38 (95% CI, 1.21-1.57), p=1.4×10-6 in 999 cases and 1,190 controls): the second within an extensive region of linkage disequilibrium that includes the ASH1L and PKLR genes (lead SNP: rs11264371, OR 1.48 [1.18-1.76], p=1.0×10-5, under a dominant model). However, there was no evidence for association at either signal on replication, and, across all data (>24,000 subjects), no indication that these variants were causally-related to T2D status.
Conclusion
Detailed fine-mapping of the 23Mb region of replicated linkage has failed to identify common variant signals contributing to the observed signal. Future studies should focus on identification of causal alleles of lower frequency and higher penetrance.
doi:10.2337/db09-0081
PMCID: PMC2699860  PMID: 19389826
chromosome 1q; linkage; association
24.  Type 2 Diabetes Risk Alleles are Associated with Reduced Size at Birth 
Diabetes  2009;58(6):1428-1433.
Objective
Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight.
Research design and methods
We genotyped single nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2 and SLC30A8) in 7986 mothers and 19200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring.
Results
We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus: 21g [95%CI:11-31g], P=2×10-5 and 14g [4-23g], P=0.004 lower birth weight per risk allele, respectively. The 4% of offspring carrying four risk alleles at these two loci were 80g [39-120g] lighter at birth than the 8% carrying none (Ptrend =5×10-7). There were no associations between birth weight and fetal genotypes at the three other loci, or maternal genotypes at any locus.
Conclusions
Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
doi:10.2337/db08-1739
PMCID: PMC2682672  PMID: 19228808
25.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE—Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS—Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS—Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ∼1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91–1.19]).
CONCLUSIONS—These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231

Results 1-25 (38)