PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Detailed Investigation of the Role of Common and Low-Frequency WFS1 Variants in Type 2 Diabetes Risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 × 10−7 on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01–0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes.
CONCLUSIONS
We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
2.  Detailed investigation of the role of common and low frequency WFS1 variants in type 2 diabetes risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
WFS1 (Wolfram Syndrome 1) SNPs are associated with risk of type 2 diabetes (T2D). Here, we aimed to refine this association and investigate the role of low frequency WFS1 variants in T2D risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions and conserved non-coding sequences in 24 T2D cases and 68 controls, selected tagging SNPs, and genotyped these in 959 UK T2D cases and 1386 controls. The same genomic regions were sequenced in 1235 T2D cases and 1668 controls to compare the frequency of rarer variants between cases and controls.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ UTR rs1046320 (P=0.008); OR=0.84, P=6.59 × 10−7 on further replication in 3753 cases and 4198 controls. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2=0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (MAF<0.01) non-synonymous variants between T2D cases and controls (P=0.79). Two intermediate frequency (MAF 0.01-0.05) non-synonymous changes also showed no statistical association with T2D.
CONCLUSION
We identified six highly correlated SNPs that show strong and comparable associations with risk of T2D association but further refinement of these associations will require large sample sizes (>100,000), or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on T2D risk in white UK populations, highlighting the complexities of undertaking association studies with low frequency variants identified by re-sequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
3.  Common variants in WFS1 confer risk of type 2 diabetes 
Nature genetics  2007;39(8):951-953.
We studied genes involved in pancreatic β cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.
doi:10.1038/ng2067
PMCID: PMC2672152  PMID: 17603484
4.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE—Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS—Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS—Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ∼1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91–1.19]).
CONCLUSIONS—These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231
5.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE
Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS
Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS
Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ~1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91-1.19]).
CONCLUSIONS
These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231

Results 1-5 (5)