Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)
Year of Publication
Document Types
1.  Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity 
Diabetes  2014;63(12):4378-4387.
We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.
PMCID: PMC4241116  PMID: 24947364
Genetics; type 2 diabetes; insulin resistance; insulin secretion; adipose expandability
2.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes 
Yaghootkar, Hanieh | Lamina, Claudia | Scott, Robert A. | Dastani, Zari | Hivert, Marie-France | Warren, Liling L. | Stancáková, Alena | Buxbaum, Sarah G. | Lyytikäinen, Leo-Pekka | Henneman, Peter | Wu, Ying | Cheung, Chloe Y.Y. | Pankow, James S. | Jackson, Anne U. | Gustafsson, Stefan | Zhao, Jing Hua | Ballantyne, Christie M. | Xie, Weijia | Bergman, Richard N. | Boehnke, Michael | el Bouazzaoui, Fatiha | Collins, Francis S. | Dunn, Sandra H. | Dupuis, Josee | Forouhi, Nita G. | Gillson, Christopher | Hattersley, Andrew T. | Hong, Jaeyoung | Kähönen, Mika | Kuusisto, Johanna | Kedenko, Lyudmyla | Kronenberg, Florian | Doria, Alessandro | Assimes, Themistocles L. | Ferrannini, Ele | Hansen, Torben | Hao, Ke | Häring, Hans | Knowles, Joshua W. | Lindgren, Cecilia M. | Nolan, John J. | Paananen, Jussi | Pedersen, Oluf | Quertermous, Thomas | Smith, Ulf | Lehtimäki, Terho | Liu, Ching-Ti | Loos, Ruth J.F. | McCarthy, Mark I. | Morris, Andrew D. | Vasan, Ramachandran S. | Spector, Tim D. | Teslovich, Tanya M. | Tuomilehto, Jaakko | van Dijk, Ko Willems | Viikari, Jorma S. | Zhu, Na | Langenberg, Claudia | Ingelsson, Erik | Semple, Robert K. | Sinaiko, Alan R. | Palmer, Colin N.A. | Walker, Mark | Lam, Karen S.L. | Paulweber, Bernhard | Mohlke, Karen L. | van Duijn, Cornelia | Raitakari, Olli T. | Bidulescu, Aurelian | Wareham, Nick J. | Laakso, Markku | Waterworth, Dawn M. | Lawlor, Debbie A. | Meigs, James B. | Richards, J. Brent | Frayling, Timothy M.
Diabetes  2013;62(10):3589-3598.
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
PMCID: PMC3781444  PMID: 23835345
3.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
PMCID: PMC3772310  PMID: 17463249
4.  A Central Role for GRB10 in Regulation of Islet Function in Man 
PLoS Genetics  2014;10(4):e1004235.
Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
Author Summary
In this paper, we report the first large genome-wide association study in man for glucose-stimulated insulin secretion (GSIS) indices during an oral glucose tolerance test. We identify seven genetic loci and provide effects on GSIS for all previously reported glycemic traits and obesity genetic loci in a large-scale sample. We observe paradoxical effects of genetic variants in the growth factor receptor-bound protein 10 (GRB10) gene yielding both reduced GSIS and reduced fasting plasma glucose concentrations, specifically showing a parent-of-origin effect of GRB10 on lower fasting plasma glucose and enhanced insulin sensitivity for maternal and elevated glucose and decreased insulin sensitivity for paternal transmissions of the risk allele. We also observe tissue-specific differences in DNA methylation and allelic imbalance in expression of GRB10 in human pancreatic islets. We further disrupt GRB10 by shRNA in human islets, showing reduction of both insulin and glucagon expression and secretion. In conclusion, we provide evidence for complex regulation of GRB10 in human islets. Our data suggest that tissue-specific methylation and imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
PMCID: PMC3974640  PMID: 24699409
5.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data 
Diabetes  2009;58(2):505-510.
OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.
RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.
RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66], P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15]; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04).
CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
PMCID: PMC2628627  PMID: 19056611
6.  Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes 
Strawbridge, Rona J. | Dupuis, Josée | Prokopenko, Inga | Barker, Adam | Ahlqvist, Emma | Rybin, Denis | Petrie, John R. | Travers, Mary E. | Bouatia-Naji, Nabila | Dimas, Antigone S. | Nica, Alexandra | Wheeler, Eleanor | Chen, Han | Voight, Benjamin F. | Taneera, Jalal | Kanoni, Stavroula | Peden, John F. | Turrini, Fabiola | Gustafsson, Stefan | Zabena, Carina | Almgren, Peter | Barker, David J.P. | Barnes, Daniel | Dennison, Elaine M. | Eriksson, Johan G. | Eriksson, Per | Eury, Elodie | Folkersen, Lasse | Fox, Caroline S. | Frayling, Timothy M. | Goel, Anuj | Gu, Harvest F. | Horikoshi, Momoko | Isomaa, Bo | Jackson, Anne U. | Jameson, Karen A. | Kajantie, Eero | Kerr-Conte, Julie | Kuulasmaa, Teemu | Kuusisto, Johanna | Loos, Ruth J.F. | Luan, Jian'an | Makrilakis, Konstantinos | Manning, Alisa K. | Martínez-Larrad, María Teresa | Narisu, Narisu | Nastase Mannila, Maria | Öhrvik, John | Osmond, Clive | Pascoe, Laura | Payne, Felicity | Sayer, Avan A. | Sennblad, Bengt | Silveira, Angela | Stančáková, Alena | Stirrups, Kathy | Swift, Amy J. | Syvänen, Ann-Christine | Tuomi, Tiinamaija | van 't Hooft, Ferdinand M. | Walker, Mark | Weedon, Michael N. | Xie, Weijia | Zethelius, Björn | Ongen, Halit | Mälarstig, Anders | Hopewell, Jemma C. | Saleheen, Danish | Chambers, John | Parish, Sarah | Danesh, John | Kooner, Jaspal | Östenson, Claes-Göran | Lind, Lars | Cooper, Cyrus C. | Serrano-Ríos, Manuel | Ferrannini, Ele | Forsen, Tom J. | Clarke, Robert | Franzosi, Maria Grazia | Seedorf, Udo | Watkins, Hugh | Froguel, Philippe | Johnson, Paul | Deloukas, Panos | Collins, Francis S. | Laakso, Markku | Dermitzakis, Emmanouil T. | Boehnke, Michael | McCarthy, Mark I. | Wareham, Nicholas J. | Groop, Leif | Pattou, François | Gloyn, Anna L. | Dedoussis, George V. | Lyssenko, Valeriya | Meigs, James B. | Barroso, Inês | Watanabe, Richard M. | Ingelsson, Erik | Langenberg, Claudia | Hamsten, Anders | Florez, Jose C.
Diabetes  2011;60(10):2624-2634.
Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.
We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates.
Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10−8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10−4), improved β-cell function (P = 1.1 × 10−5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10−6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets.
We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
PMCID: PMC3178302  PMID: 21873549
7.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes 
Zeggini, Eleftheria | Scott, Laura J. | Saxena, Richa | Voight, Benjamin F. | Marchini, Jonathan L | Hu, Tainle | de Bakker, Paul IW | Abecasis, Gonçalo R | Almgren, Peter | Andersen, Gitte | Ardlie, Kristin | Boström, Kristina Bengtsson | Bergman, Richard N | Bonnycastle, Lori L | Borch-Johnsen, Knut | Burtt, Noël P | Chen, Hong | Chines, Peter S | Daly, Mark J | Deodhar, Parimal | Ding, Charles | Doney, Alex S F | Duren, William L | Elliott, Katherine S | Erdos, Michael R | Frayling, Timothy M | Freathy, Rachel M | Gianniny, Lauren | Grallert, Harald | Grarup, Niels | Groves, Christopher J | Guiducci, Candace | Hansen, Torben | Herder, Christian | Hitman, Graham A | Hughes, Thomas E | Isomaa, Bo | Jackson, Anne U | Jørgensen, Torben | Kong, Augustine | Kubalanza, Kari | Kuruvilla, Finny G | Kuusisto, Johanna | Langenberg, Claudia | Lango, Hana | Lauritzen, Torsten | Li, Yun | Lindgren, Cecilia M | Lyssenko, Valeriya | Marvelle, Amanda F | Meisinger, Christa | Midthjell, Kristian | Mohlke, Karen L | Morken, Mario A | Morris, Andrew D | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Palmer, Colin NA | Payne, Felicity | Perry, John RB | Pettersen, Elin | Platou, Carl | Prokopenko, Inga | Qi, Lu | Qin, Li | Rayner, Nigel W | Rees, Matthew | Roix, Jeffrey J | Sandbæk, Anelli | Shields, Beverley | Sjögren, Marketa | Steinthorsdottir, Valgerdur | Stringham, Heather M | Swift, Amy J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Timpson, Nicholas J | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Walker, Mark | Watanabe, Richard M | Weedon, Michael N | Willer, Cristen J | Illig, Thomas | Hveem, Kristian | Hu, Frank B | Laakso, Markku | Stefansson, Kari | Pedersen, Oluf | Wareham, Nicholas J | Barroso, Inês | Hattersley, Andrew T | Collins, Francis S | Groop, Leif | McCarthy, Mark I | Boehnke, Michael | Altshuler, David
Nature genetics  2008;40(5):638-645.
Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10−14), CDC123/CAMK1D (p=1.2×10−10), TSPAN8/LGR5 (p=1.1×10−9), THADA (p=1.1×10−9), ADAMTS9 (p=1.2×10−8), and NOTCH2 (p=4.1×10−8) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D.
PMCID: PMC2672416  PMID: 18372903
8.  Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans 
Diabetes  2010;59(5):1266-1275.
Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action.
We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084).
The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction.
Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
PMCID: PMC2857908  PMID: 20185807
9.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis 
Voight, Benjamin F | Scott, Laura J | Steinthorsdottir, Valgerdur | Morris, Andrew P | Dina, Christian | Welch, Ryan P | Zeggini, Eleftheria | Huth, Cornelia | Aulchenko, Yurii S | Thorleifsson, Gudmar | McCulloch, Laura J | Ferreira, Teresa | Grallert, Harald | Amin, Najaf | Wu, Guanming | Willer, Cristen J | Raychaudhuri, Soumya | McCarroll, Steve A | Langenberg, Claudia | Hofmann, Oliver M | Dupuis, Josée | Qi, Lu | Segrè, Ayellet V | van Hoek, Mandy | Navarro, Pau | Ardlie, Kristin | Balkau, Beverley | Benediktsson, Rafn | Bennett, Amanda J | Blagieva, Roza | Boerwinkle, Eric | Bonnycastle, Lori L | Boström, Kristina Bengtsson | Bravenboer, Bert | Bumpstead, Suzannah | Burtt, Noisël P | Charpentier, Guillaume | Chines, Peter S | Cornelis, Marilyn | Couper, David J | Crawford, Gabe | Doney, Alex S F | Elliott, Katherine S | Elliott, Amanda L | Erdos, Michael R | Fox, Caroline S | Franklin, Christopher S | Ganser, Martha | Gieger, Christian | Grarup, Niels | Green, Todd | Griffin, Simon | Groves, Christopher J | Guiducci, Candace | Hadjadj, Samy | Hassanali, Neelam | Herder, Christian | Isomaa, Bo | Jackson, Anne U | Johnson, Paul R V | Jørgensen, Torben | Kao, Wen H L | Klopp, Norman | Kong, Augustine | Kraft, Peter | Kuusisto, Johanna | Lauritzen, Torsten | Li, Man | Lieverse, Aloysius | Lindgren, Cecilia M | Lyssenko, Valeriya | Marre, Michel | Meitinger, Thomas | Midthjell, Kristian | Morken, Mario A | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Payne, Felicity | Perry, John R B | Petersen, Ann-Kristin | Platou, Carl | Proença, Christine | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, N William | Robertson, Neil R | Rocheleau, Ghislain | Roden, Michael | Sampson, Michael J | Saxena, Richa | Shields, Beverley M | Shrader, Peter | Sigurdsson, Gunnar | Sparsø, Thomas | Strassburger, Klaus | Stringham, Heather M | Sun, Qi | Swift, Amy J | Thorand, Barbara | Tichet, Jean | Tuomi, Tiinamaija | van Dam, Rob M | van Haeften, Timon W | van Herpt, Thijs | van Vliet-Ostaptchouk, Jana V | Walters, G Bragi | Weedon, Michael N | Wijmenga, Cisca | Witteman, Jacqueline | Bergman, Richard N | Cauchi, Stephane | Collins, Francis S | Gloyn, Anna L | Gyllensten, Ulf | Hansen, Torben | Hide, Winston A | Hitman, Graham A | Hofman, Albert | Hunter, David J | Hveem, Kristian | Laakso, Markku | Mohlke, Karen L | Morris, Andrew D | Palmer, Colin N A | Pramstaller, Peter P | Rudan, Igor | Sijbrands, Eric | Stein, Lincoln D | Tuomilehto, Jaakko | Uitterlinden, Andre | Walker, Mark | Wareham, Nicholas J | Watanabe, Richard M | Abecasis, Gonçalo R | Boehm, Bernhard O | Campbell, Harry | Daly, Mark J | Hattersley, Andrew T | Hu, Frank B | Meigs, James B | Pankow, James S | Pedersen, Oluf | Wichmann, H-Erich | Barroso, Inês | Florez, Jose C | Frayling, Timothy M | Groop, Leif | Sladek, Rob | Thorsteinsdottir, Unnur | Wilson, James F | Illig, Thomas | Froguel, Philippe | van Duijn, Cornelia M | Stefansson, Kari | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2010;42(7):579-589.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
PMCID: PMC3080658  PMID: 20581827
10.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge 
Saxena, Richa | Hivert, Marie-France | Langenberg, Claudia | Tanaka, Toshiko | Pankow, James S | Vollenweider, Peter | Lyssenko, Valeriya | Bouatia-Naji, Nabila | Dupuis, Josée | Jackson, Anne U | Kao, W H Linda | Li, Man | Glazer, Nicole L | Manning, Alisa K | Luan, Jian’an | Stringham, Heather M | Prokopenko, Inga | Johnson, Toby | Grarup, Niels | Boesgaard, Trine W | Lecoeur, Cécile | Shrader, Peter | O’Connell, Jeffrey | Ingelsson, Erik | Couper, David J | Rice, Kenneth | Song, Kijoung | Andreasen, Camilla H | Dina, Christian | Köttgen, Anna | Le Bacquer, Olivier | Pattou, François | Taneera, Jalal | Steinthorsdottir, Valgerdur | Rybin, Denis | Ardlie, Kristin | Sampson, Michael | Qi, Lu | van Hoek, Mandy | Weedon, Michael N | Aulchenko, Yurii S | Voight, Benjamin F | Grallert, Harald | Balkau, Beverley | Bergman, Richard N | Bielinski, Suzette J | Bonnefond, Amelie | Bonnycastle, Lori L | Borch-Johnsen, Knut | Böttcher, Yvonne | Brunner, Eric | Buchanan, Thomas A | Bumpstead, Suzannah J | Cavalcanti-Proença, Christine | Charpentier, Guillaume | Chen, Yii-Der Ida | Chines, Peter S | Collins, Francis S | Cornelis, Marilyn | Crawford, Gabriel J | Delplanque, Jerome | Doney, Alex | Egan, Josephine M | Erdos, Michael R | Firmann, Mathieu | Forouhi, Nita G | Fox, Caroline S | Goodarzi, Mark O | Graessler, Jürgen | Hingorani, Aroon | Isomaa, Bo | Jørgensen, Torben | Kivimaki, Mika | Kovacs, Peter | Krohn, Knut | Kumari, Meena | Lauritzen, Torsten | Lévy-Marchal, Claire | Mayor, Vladimir | McAteer, Jarred B | Meyre, David | Mitchell, Braxton D | Mohlke, Karen L | Morken, Mario A | Narisu, Narisu | Palmer, Colin N A | Pakyz, Ruth | Pascoe, Laura | Payne, Felicity | Pearson, Daniel | Rathmann, Wolfgang | Sandbaek, Annelli | Sayer, Avan Aihie | Scott, Laura J | Sharp, Stephen J | Sijbrands, Eric | Singleton, Andrew | Siscovick, David S | Smith, Nicholas L | Sparsø, Thomas | Swift, Amy J | Syddall, Holly | Thorleifsson, Gudmar | Tönjes, Anke | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Valle, Timo T | Waeber, Gérard | Walley, Andrew | Waterworth, Dawn M | Zeggini, Eleftheria | Zhao, Jing Hua | Illig, Thomas | Wichmann, H Erich | Wilson, James F | van Duijn, Cornelia | Hu, Frank B | Morris, Andrew D | Frayling, Timothy M | Hattersley, Andrew T | Thorsteinsdottir, Unnur | Stefansson, Kari | Nilsson, Peter | Syvänen, Ann-Christine | Shuldiner, Alan R | Walker, Mark | Bornstein, Stefan R | Schwarz, Peter | Williams, Gordon H | Nathan, David M | Kuusisto, Johanna | Laakso, Markku | Cooper, Cyrus | Marmot, Michael | Ferrucci, Luigi | Mooser, Vincent | Stumvoll, Michael | Loos, Ruth J F | Altshuler, David | Psaty, Bruce M | Rotter, Jerome I | Boerwinkle, Eric | Hansen, Torben | Pedersen, Oluf | Florez, Jose C | McCarthy, Mark I | Boehnke, Michael | Barroso, Inês | Sladek, Robert | Froguel, Philippe | Meigs, James B | Groop, Leif | Wareham, Nicholas J | Watanabe, Richard M
Nature genetics  2010;42(2):142-148.
Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
PMCID: PMC2922003  PMID: 20081857
11.  Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes 
Human Molecular Genetics  2009;19(3):535-544.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
PMCID: PMC2798726  PMID: 19933169
12.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE—Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS—Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS—Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ∼1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91–1.19]).
CONCLUSIONS—These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
PMCID: PMC2570416  PMID: 18728231
13.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ~1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91-1.19]).
These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
PMCID: PMC2570416  PMID: 18728231
14.  Common Variation in the LMNA Gene (Encoding Lamin A/C) and Type 2 Diabetes 
Diabetes  2007;56(3):879-883.
Mutations in the LMNA gene (encoding lamin A/C) underlie familial partial lipodystrophy, a syndrome of monogenic insulin resistance and diabetes. LMNA maps to the well-replicated diabetes-linkage region on chromosome 1q, and there are reported associations between LMNA single nucleotide polymorphisms (SNPs) (particularly rs4641; H566H) and metabolic syndrome components. We examined the relationship between LMNA variation and type 2 diabetes (using six tag SNPs capturing >90% of common variation) in several large datasets. Analysis of 2,490 U.K. diabetic case and 2,556 control subjects revealed no significant associations at either genotype or haplotype level: the minor allele at rs4641 was no more frequent in case subjects (allelic odds ratio [OR] 1.07 [95% CI 0.98-1.17], P = 0.15). In 390 U.K. trios, family-based association analyses revealed nominally significant overtransmission of the major allele at rs12063564 (P = 0.01), which was not corroborated in other samples. Finally, genotypes for 2,817 additional subjects from the International 1q Consortium revealed no consistent case-control or family-based associations with LMNA variants. Across all our data, the OR for the rs4641 minor allele approached but did not attain significance (1.07 [0.99-1.15], P = 0.08). Our data do not therefore support a major effect of LMNA variation on diabetes risk. However, in a meta-analysis including other available data, there is evidence that rs4641 has a modest effect on diabetes susceptibility (1.10 [1.04-1.16], P = 0.001).
PMCID: PMC2672988  PMID: 17327460
15.  Common variants in WFS1 confer risk of type 2 diabetes 
Nature genetics  2007;39(8):951-953.
We studied genes involved in pancreatic β cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.
PMCID: PMC2672152  PMID: 17603484
16.  A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity 
Science (New York, N.Y.)  2007;316(5826):889-894.
Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.
PMCID: PMC2646098  PMID: 17434869
17.  Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction 
PLoS Medicine  2006;3(10):e374.
A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed.
Methods and Findings
Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles.
Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases.
Combining information from several known common risk polymorphisms allows the identification of subgroups of the population with markedly differing risks of developing type 2 diabetes.
Editors' Summary
Diabetes is an important and increasingly common global health problem; the World Health Organization has estimated that about 170 million people currently have diabetes worldwide. One particular form, type 2 diabetes, develops when cells in the body become unable to respond to a hormone called insulin. Insulin is normally released by the pancreas and controls the ability of body cells to take in glucose (sugar). Therefore, when cells become insensitive to insulin as in people with type 2 diabetes, glucose levels in the body are not well controlled and may become dangerously high in the blood. These high levels can have long-term damaging effects on various organs in the body, particularly the eyes, nerves, heart, and kidneys. There are many different factors that affect whether someone is likely to develop type 2 diabetes. These factors can be broadly grouped into two categories: environmental and genetic. Environmental factors such as obesity, a diet high in sugar, and a sedentary lifestyle are all risk factors for developing type 2 diabetes in later life. Genetically, a number of variants in many different genes may affect the risk of developing the disease. Generally, these gene variants are common in human populations but each gene variant only mildly increases the risk that a person possessing it will get type 2 diabetes.
Why Was This Study Done?
The investigators performing this study wanted to understand how different gene variants combine to affect an individual's risk of getting type 2 diabetes. That is, if a person carries many different variants, does their overall risk increase a lot or only a little?
What Did the Researchers Do and Find?
First, the researchers surveyed the published reports to identify those gene variants for which there was strong evidence of an association with type 2 diabetes. They found mutations in three genes that had been shown reproducibly to be associated with type 2 diabetes in different studies: PPARG (whose product is involved in regulation of fat tissue), KCNJ11 (whose product is involved in insulin production), and TCF7L2 (whose product is thought to be involved in controlling sugar levels). Then, they compared two groups of white people in the UK: 2,409 people with type 2 diabetes (“cases”), and 3,668 people from the general population (“controls”). The researchers compared the two groups to see which individuals possessed which gene variants, and did statistical testing to work out to what extent having particular combinations of the gene variants affected an individual's chance of being a “case” versus a “control.” Their results showed that in the groups studied, having an ever-increasing number of gene variants increased the risk of developing diabetes. The risk that someone with none of the gene variants would develop type 2 diabetes was about 2%, while the chance for someone with all gene variants was about10%.
What Do These Findings Mean?
These results show that the risk of developing type 2 diabetes is greater if an individual possesses all of the gene variants that were examined in this study. The analysis also suggests that using information on all three variants, rather than just one, is likely to be more accurate in predicting future risk. How this genetic information should be used alongside other well-known preventative measures such as altered lifestyle requires further study.
Additional Information.
Please access these Web sites via the online version of this summary at
NHS Direct patient information on diabetes
National Diabetes Information Clearinghouse information on type 2 diabetes
World Health Organization Diabetes Programme
Centers for Disease ControlDiabetes Public Health Resource
PMCID: PMC1584415  PMID: 17020404
18.  The functional "KL-VS" variant of KLOTHO is not associated with type 2 diabetes in 5028 UK Caucasians 
BMC Medical Genetics  2006;7:51.
Klotho has an important role in insulin signalling and the development of ageing-like phenotypes in mice. The common functional "KL-VS" variant in the KLOTHO (KL) gene is associated with longevity in humans but its role in type 2 diabetes is not known. We performed a large case-control and family-based study to test the hypothesis that KL-VS is associated with type 2 diabetes in a UK Caucasian population.
We genotyped 1793 cases, 1619 controls and 1616 subjects from 509 families for the single nucleotide polymorphism (SNP) F352V (rs9536314) that defines the KL-VS variant. Allele and genotype frequencies were compared between cases and controls. Family-based analysis was used to test for over- or under-transmission of V352 to affected offspring.
Despite good power to detect odds ratios of 1.2, there were no significant associations between alleles or genotypes and type 2 diabetes (V352 allele: odds ratio = 0.96 (0.84–1.09)). Additional analysis of quantitative trait data in 1177 healthy control subjects showed no association of the variant with fasting insulin, glucose, triglycerides, HDL- or LDL-cholesterol (all P > 0.05). However, the HDL-cholesterol levels observed across the genotype groups showed a similar, but non-significant, pattern to previously reported data.
This is the first large-scale study to examine the association between common functional variation in KL and type 2 diabetes risk. We have found no evidence that the functional KL-VS variant is a risk factor for type 2 diabetes in a large UK Caucasian case-control and family-based study.
PMCID: PMC1534014  PMID: 16753056

Results 1-18 (18)