Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
Year of Publication
Document Types
1.  Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus 
Mahajan, Anubha | Sim, Xueling | Ng, Hui Jin | Manning, Alisa | Rivas, Manuel A. | Highland, Heather M. | Locke, Adam E. | Grarup, Niels | Im, Hae Kyung | Cingolani, Pablo | Flannick, Jason | Fontanillas, Pierre | Fuchsberger, Christian | Gaulton, Kyle J. | Teslovich, Tanya M. | Rayner, N. William | Robertson, Neil R. | Beer, Nicola L. | Rundle, Jana K. | Bork-Jensen, Jette | Ladenvall, Claes | Blancher, Christine | Buck, David | Buck, Gemma | Burtt, Noël P. | Gabriel, Stacey | Gjesing, Anette P. | Groves, Christopher J. | Hollensted, Mette | Huyghe, Jeroen R. | Jackson, Anne U. | Jun, Goo | Justesen, Johanne Marie | Mangino, Massimo | Murphy, Jacquelyn | Neville, Matt | Onofrio, Robert | Small, Kerrin S. | Stringham, Heather M. | Syvänen, Ann-Christine | Trakalo, Joseph | Abecasis, Goncalo | Bell, Graeme I. | Blangero, John | Cox, Nancy J. | Duggirala, Ravindranath | Hanis, Craig L. | Seielstad, Mark | Wilson, James G. | Christensen, Cramer | Brandslund, Ivan | Rauramaa, Rainer | Surdulescu, Gabriela L. | Doney, Alex S. F. | Lannfelt, Lars | Linneberg, Allan | Isomaa, Bo | Tuomi, Tiinamaija | Jørgensen, Marit E. | Jørgensen, Torben | Kuusisto, Johanna | Uusitupa, Matti | Salomaa, Veikko | Spector, Timothy D. | Morris, Andrew D. | Palmer, Colin N. A. | Collins, Francis S. | Mohlke, Karen L. | Bergman, Richard N. | Ingelsson, Erik | Lind, Lars | Tuomilehto, Jaakko | Hansen, Torben | Watanabe, Richard M. | Prokopenko, Inga | Dupuis, Josee | Karpe, Fredrik | Groop, Leif | Laakso, Markku | Pedersen, Oluf | Florez, Jose C. | Morris, Andrew P. | Altshuler, David | Meigs, James B. | Boehnke, Michael | McCarthy, Mark I. | Lindgren, Cecilia M. | Gloyn, Anna L.
PLoS Genetics  2015;11(1):e1004876.
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
Author Summary
Understanding how FI and FG levels are regulated is important because their derangement is a feature of T2D. Despite recent success from GWAS in identifying regions of the genome influencing glycemic traits, collectively these loci explain only a small proportion of trait variance. Unlocking the biological mechanisms driving these associations has been challenging because the vast majority of variants map to non-coding sequence, and the genes through which they exert their impact are largely unknown. In the current study, we sought to increase our understanding of the physiological pathways influencing both traits using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding variants and consequently genes associated with either FG or FI levels. We identified novel association signals for both traits including the receptor for GLP-1 agonists which are a widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS loci which point to the genes underlying these association signals. Importantly, we found that multiple coding variants in G6PC2 result in a loss of protein function and lower fasting glucose levels.
PMCID: PMC4307976  PMID: 25625282
2.  Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent 
PLoS ONE  2014;9(6):e98608.
Most studies seeking common variant associations with type 2 diabetes (T2D) have focused on individuals of European ancestry. These discoveries need to be evaluated in other major ancestral groups, to understand ethnic differences in predisposition, and establish whether these contribute to variation in T2D prevalence and presentation. This study aims to establish whether common variants conferring T2D-risk in Europeans contribute to T2D-susceptibility in the South Asian population of Sri Lanka.
Lead single nucleotide polymorphism (SNPs) at 37 T2D-risk loci attaining genome-wide significance in Europeans were genotyped in 878 T2D cases and 1523 normoglycaemic controls from Sri Lanka. Association testing was performed by logistic regression adjusting for age and sex and by the Cochran-Mantel-Haenszel test after stratifying according to self-identified ethnolinguistic subgroup. A weighted genetic risk score was generated to examine the combined effect of these SNPs on T2D-risk in the Sri Lankan population.
Of the 36 SNPs passing quality control, sixteen showed nominal (p<0.05) association in Sri Lankan samples, fifteen of those directionally-consistent with the original signal. Overall, these association findings were robust to analyses that accounted for membership of ethnolinguistic subgroups. Overall, the odds ratios for 31 of the 36 SNPs were directionally-consistent with those observed in Europeans (p = 3.2×10−6). Allelic odds ratios and risk allele frequencies in Sri Lankan subjects were not systematically different to those reported in Europeans. Genetic risk score and risk of T2D were strongly related in Sri Lankans (per allele OR 1.10 [95%CI 1.08–1.13], p = 1.2×10−17).
Our data indicate that most T2D-risk variants identified in Europeans have similar effects in South Asians from Sri Lanka, and that systematic difference in common variant associations are unlikely to explain inter-ethnic differences in prevalence or presentation of T2D.
PMCID: PMC4057178  PMID: 24926958
3.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data 
Diabetes  2009;58(2):505-510.
OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.
RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.
RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66], P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15]; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04).
CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
PMCID: PMC2628627  PMID: 19056611
4.  Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes 
Annals of human genetics  2010;75(1):10-19.
In the presence of epistasis multilocus association tests of human complex traits can provide powerful methods to detect susceptibility variants. We undertook multilocus analyses in 1924 type 2 diabetes cases and 2938 controls from the Wellcome Trust Case Control Consortium (WTCCC). We performed a two-dimensional genome-wide association (GWA) scan using joint two-locus tests of association including main and epistatic effects in 70,236 markers tagging common variants. We found two-locus association at 79 SNP-pairs at a Bonferroni-corrected P-value = 0.05 (uncorrected P-value = 2.14 × 10−11). The 79 pair-wise results always contained rs11196205 in TCF7L2 paired with 79 variants including confirmed variants in FTO, TSPAN8, and CDKAL1, which are associated in the absence of epistasis. However, the majority (82%) of the 79 variants did not have compelling single-locus association signals (P-value = 5 × 10−4). Analyses conditional on the single-locus effects at TCF7L2 established that the joint two-locus results could be attributed to single-locus association at TCF7L2 alone. Interaction analyses among the peak 80 regions and among 23 previously established diabetes candidate genes identified five SNP-pairs with case-control and case-only epistatic signals. Our results demonstrate the feasibility of systematic scans in GWA data, but confirm that single-locus association can underlie and obscure multilocus findings.
PMCID: PMC3430851  PMID: 21133856
Epistasis; simultaneous search; joint effects; genome-wide association
5.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits 
PLoS Genetics  2012;8(8):e1002793.
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.
Author Summary
Recent genetic studies have identified hundreds of regions of the human genome that contribute to risk for type 2 diabetes, coronary artery disease and myocardial infarction, and to related quantitative traits such as body mass index, glucose and insulin levels, blood lipid levels, and blood pressure. These results motivate two central questions: (1) can further genetic investigation identify additional associated regions?; and (2) can more detailed genetic investigation help us identify the causal variants (or variants more strongly correlated with the causal variants) in the regions identified so far? Addressing these questions requires assaying many genetic variants in DNA samples from thousands of individuals, which is expensive and timeconsuming when done a few SNPs at a time. To facilitate these investigations, we designed the “Metabochip,” a custom genotyping array that assays variation in nearly 200,000 sites in the human genome. Here we describe the Metabochip, evaluate its performance in assaying human genetic variation, and describe solutions to methodological challenges commonly encountered in its analysis.
PMCID: PMC3410907  PMID: 22876189
6.  A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection 
PLoS Genetics  2011;7(9):e1002270.
We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11
Author Summary
Physiological concentrations of metabolites—small molecules involved in biochemical processes in living systems—can be measured and used to diagnose and predict disease states. A common goal is to detect and clinically exploit statistical differences in metabolite concentrations between diseased and healthy individuals. As a basis for the design and interpretation of case-control studies, it is useful to have a characterization of metabolic diversity amongst healthy individuals, some of which stems from inter-individual genetic variation. When a single genetic locus has a sufficiently strong effect on metabolism, its genomic position can be determined by collecting metabolite concentration data and genome-wide genotype data on a set of individuals and searching for associations between the two data sets—a so-called metabolite quantitative trait locus (mQTL) study. By so tracing mQTLs, we can identify the genetic drivers of metabolism, characterize how the nature or quantity of the corresponding expressed protein(s) feeds forward to influence metabolite levels, and specify disease-predictive models that incorporate mutual dependence amongst genetics, environment, and metabolism.
PMCID: PMC3169529  PMID: 21931564
Diabetes  2009;58(7):1704-1709.
Linkage of the chromosome 1q21–25 region to type 2 diabetes has been demonstrated in multiple ethnic groups. We performed common variant fine-mapping across a 23-Mb interval in a multiethnic sample to search for variants responsible for this linkage signal.
In all, 5,290 single nucleotide polymorphisms (SNPs) were successfully genotyped in 3,179 type 2 diabetes case and control subjects from eight populations with evidence of 1q linkage. Samples were ascertained using strategies designed to enhance power to detect variants causal for 1q linkage. After imputation, we estimate ∼80% coverage of common variation across the region (r 2 > 0.8, Europeans). Association signals of interest were evaluated through in silico replication and de novo genotyping in ∼8,500 case subjects and 12,400 control subjects.
Association mapping of the 23-Mb region identified two strong signals, both of which were restricted to the subset of European-descent samples. The first mapped to the NOS1AP (CAPON) gene region (lead SNP: rs7538490, odds ratio 1.38 [95% CI 1.21–1.57], P = 1.4 × 10−6, in 999 case subjects and 1,190 control subjects); the second mapped within an extensive region of linkage disequilibrium that includes the ASH1L and PKLR genes (lead SNP: rs11264371, odds ratio 1.48 [1.18–1.76], P = 1.0 × 10−5, under a dominant model). However, there was no evidence for association at either signal on replication, and, across all data (>24,000 subjects), there was no indication that these variants were causally related to type 2 diabetes status.
Detailed fine-mapping of the 23-Mb region of replicated linkage has failed to identify common variant signals contributing to the observed signal. Future studies should focus on identification of causal alleles of lower frequency and higher penetrance.
PMCID: PMC2699860  PMID: 19389826
PLoS Medicine  2006;3(10):e374.
A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed.
Methods and Findings
Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles.
Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases.
Combining information from several known common risk polymorphisms allows the identification of subgroups of the population with markedly differing risks of developing type 2 diabetes.
Editors' Summary
Diabetes is an important and increasingly common global health problem; the World Health Organization has estimated that about 170 million people currently have diabetes worldwide. One particular form, type 2 diabetes, develops when cells in the body become unable to respond to a hormone called insulin. Insulin is normally released by the pancreas and controls the ability of body cells to take in glucose (sugar). Therefore, when cells become insensitive to insulin as in people with type 2 diabetes, glucose levels in the body are not well controlled and may become dangerously high in the blood. These high levels can have long-term damaging effects on various organs in the body, particularly the eyes, nerves, heart, and kidneys. There are many different factors that affect whether someone is likely to develop type 2 diabetes. These factors can be broadly grouped into two categories: environmental and genetic. Environmental factors such as obesity, a diet high in sugar, and a sedentary lifestyle are all risk factors for developing type 2 diabetes in later life. Genetically, a number of variants in many different genes may affect the risk of developing the disease. Generally, these gene variants are common in human populations but each gene variant only mildly increases the risk that a person possessing it will get type 2 diabetes.
Why Was This Study Done?
The investigators performing this study wanted to understand how different gene variants combine to affect an individual's risk of getting type 2 diabetes. That is, if a person carries many different variants, does their overall risk increase a lot or only a little?
What Did the Researchers Do and Find?
First, the researchers surveyed the published reports to identify those gene variants for which there was strong evidence of an association with type 2 diabetes. They found mutations in three genes that had been shown reproducibly to be associated with type 2 diabetes in different studies: PPARG (whose product is involved in regulation of fat tissue), KCNJ11 (whose product is involved in insulin production), and TCF7L2 (whose product is thought to be involved in controlling sugar levels). Then, they compared two groups of white people in the UK: 2,409 people with type 2 diabetes (“cases”), and 3,668 people from the general population (“controls”). The researchers compared the two groups to see which individuals possessed which gene variants, and did statistical testing to work out to what extent having particular combinations of the gene variants affected an individual's chance of being a “case” versus a “control.” Their results showed that in the groups studied, having an ever-increasing number of gene variants increased the risk of developing diabetes. The risk that someone with none of the gene variants would develop type 2 diabetes was about 2%, while the chance for someone with all gene variants was about10%.
What Do These Findings Mean?
These results show that the risk of developing type 2 diabetes is greater if an individual possesses all of the gene variants that were examined in this study. The analysis also suggests that using information on all three variants, rather than just one, is likely to be more accurate in predicting future risk. How this genetic information should be used alongside other well-known preventative measures such as altered lifestyle requires further study.
Additional Information.
Please access these Web sites via the online version of this summary at
NHS Direct patient information on diabetes
National Diabetes Information Clearinghouse information on type 2 diabetes
World Health Organization Diabetes Programme
Centers for Disease ControlDiabetes Public Health Resource
PMCID: PMC1584415  PMID: 17020404

Results 1-8 (8)