PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None
Journals
more »
Year of Publication
Document Types
1.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes 
Yaghootkar, Hanieh | Lamina, Claudia | Scott, Robert A. | Dastani, Zari | Hivert, Marie-France | Warren, Liling L. | Stancáková, Alena | Buxbaum, Sarah G. | Lyytikäinen, Leo-Pekka | Henneman, Peter | Wu, Ying | Cheung, Chloe Y.Y. | Pankow, James S. | Jackson, Anne U. | Gustafsson, Stefan | Zhao, Jing Hua | Ballantyne, Christie M. | Xie, Weijia | Bergman, Richard N. | Boehnke, Michael | el Bouazzaoui, Fatiha | Collins, Francis S. | Dunn, Sandra H. | Dupuis, Josee | Forouhi, Nita G. | Gillson, Christopher | Hattersley, Andrew T. | Hong, Jaeyoung | Kähönen, Mika | Kuusisto, Johanna | Kedenko, Lyudmyla | Kronenberg, Florian | Doria, Alessandro | Assimes, Themistocles L. | Ferrannini, Ele | Hansen, Torben | Hao, Ke | Häring, Hans | Knowles, Joshua W. | Lindgren, Cecilia M. | Nolan, John J. | Paananen, Jussi | Pedersen, Oluf | Quertermous, Thomas | Smith, Ulf | Lehtimäki, Terho | Liu, Ching-Ti | Loos, Ruth J.F. | McCarthy, Mark I. | Morris, Andrew D. | Vasan, Ramachandran S. | Spector, Tim D. | Teslovich, Tanya M. | Tuomilehto, Jaakko | van Dijk, Ko Willems | Viikari, Jorma S. | Zhu, Na | Langenberg, Claudia | Ingelsson, Erik | Semple, Robert K. | Sinaiko, Alan R. | Palmer, Colin N.A. | Walker, Mark | Lam, Karen S.L. | Paulweber, Bernhard | Mohlke, Karen L. | van Duijn, Cornelia | Raitakari, Olli T. | Bidulescu, Aurelian | Wareham, Nick J. | Laakso, Markku | Waterworth, Dawn M. | Lawlor, Debbie A. | Meigs, James B. | Richards, J. Brent | Frayling, Timothy M.
Diabetes  2013;62(10):3589-3598.
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
doi:10.2337/db13-0128
PMCID: PMC3781444  PMID: 23835345
2.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
3.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
4.  Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes 
Annals of human genetics  2010;75(1):10-19.
Summary
In the presence of epistasis multilocus association tests of human complex traits can provide powerful methods to detect susceptibility variants. We undertook multilocus analyses in 1924 type 2 diabetes cases and 2938 controls from the Wellcome Trust Case Control Consortium (WTCCC). We performed a two-dimensional genome-wide association (GWA) scan using joint two-locus tests of association including main and epistatic effects in 70,236 markers tagging common variants. We found two-locus association at 79 SNP-pairs at a Bonferroni-corrected P-value = 0.05 (uncorrected P-value = 2.14 × 10−11). The 79 pair-wise results always contained rs11196205 in TCF7L2 paired with 79 variants including confirmed variants in FTO, TSPAN8, and CDKAL1, which are associated in the absence of epistasis. However, the majority (82%) of the 79 variants did not have compelling single-locus association signals (P-value = 5 × 10−4). Analyses conditional on the single-locus effects at TCF7L2 established that the joint two-locus results could be attributed to single-locus association at TCF7L2 alone. Interaction analyses among the peak 80 regions and among 23 previously established diabetes candidate genes identified five SNP-pairs with case-control and case-only epistatic signals. Our results demonstrate the feasibility of systematic scans in GWA data, but confirm that single-locus association can underlie and obscure multilocus findings.
doi:10.1111/j.1469-1809.2010.00629.x
PMCID: PMC3430851  PMID: 21133856
Epistasis; simultaneous search; joint effects; genome-wide association
5.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data 
Diabetes  2009;58(2):505-510.
OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.
RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.
RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66], P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15]; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04).
CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
doi:10.2337/db08-0906
PMCID: PMC2628627  PMID: 19056611
6.  Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases 
Perry, John R. B. | Voight, Benjamin F. | Yengo, Loïc | Amin, Najaf | Dupuis, Josée | Ganser, Martha | Grallert, Harald | Navarro, Pau | Li, Man | Qi, Lu | Steinthorsdottir, Valgerdur | Scott, Robert A. | Almgren, Peter | Arking, Dan E. | Aulchenko, Yurii | Balkau, Beverley | Benediktsson, Rafn | Bergman, Richard N. | Boerwinkle, Eric | Bonnycastle, Lori | Burtt, Noël P. | Campbell, Harry | Charpentier, Guillaume | Collins, Francis S. | Gieger, Christian | Green, Todd | Hadjadj, Samy | Hattersley, Andrew T. | Herder, Christian | Hofman, Albert | Johnson, Andrew D. | Kottgen, Anna | Kraft, Peter | Labrune, Yann | Langenberg, Claudia | Manning, Alisa K. | Mohlke, Karen L. | Morris, Andrew P. | Oostra, Ben | Pankow, James | Petersen, Ann-Kristin | Pramstaller, Peter P. | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, William | Roden, Michael | Rudan, Igor | Rybin, Denis | Scott, Laura J. | Sigurdsson, Gunnar | Sladek, Rob | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Tuomilehto, Jaakko | Uitterlinden, Andre G. | Vivequin, Sidonie | Weedon, Michael N. | Wright, Alan F. | Hu, Frank B. | Illig, Thomas | Kao, Linda | Meigs, James B. | Wilson, James F. | Stefansson, Kari | van Duijn, Cornelia | Altschuler, David | Morris, Andrew D. | Boehnke, Michael | McCarthy, Mark I. | Froguel, Philippe | Palmer, Colin N. A. | Wareham, Nicholas J. | Groop, Leif | Frayling, Timothy M. | Cauchi, Stéphane
PLoS Genetics  2012;8(5):e1002741.
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
Author Summary
Individuals with Type 2 diabetes (T2D) can present with variable clinical characteristics. It is well known that obesity is a major risk factor for type 2 diabetes, yet patients can vary considerably—there are many lean diabetes patients and many overweight people without diabetes. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). Specifically, as lean T2D patients had lower risk than obese patients, they must have been more genetically susceptible. Using genetic data from multiple genome-wide association studies, we tested genetic markers across the genome in 2,112 lean type 2 diabetes cases (BMI<25 kg/m2), 4,123 obese cases (BMI≥30 kg/m2), and 54,412 healthy controls. We confirmed our results in an additional 2,881 lean cases, 8,702 obese cases, and 18,957 healthy controls. Using these data we found differences in genetic enrichment between lean and obese cases, supporting our original hypothesis. We also searched for genetic variants that may be risk factors only in lean or obese patients and found two novel gene regions not previously reported in European individuals. These findings may influence future study design for type 2 diabetes and provide further insight into the biology of the disease.
doi:10.1371/journal.pgen.1002741
PMCID: PMC3364960  PMID: 22693455
7.  Learning From Molecular Genetics 
Diabetes  2008;57(11):2889-2898.
doi:10.2337/db08-0343
PMCID: PMC2570381  PMID: 18971436
8.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
OBJECTIVE
The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.
RESEARCH DESIGN AND METHODS
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.
RESULTS
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52–0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97–1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI −0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [−0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log10 triglycerides: 0.61 [95% CI 0.45–0.83]; P = 0.002).
CONCLUSIONS
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
9.  Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI 
Diabetes  2008;57(5):1419-1426.
OBJECTIVE
Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits.
RESEARCH DESIGN AND METHODS
We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations.
RESULTS
Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001– 0.048]; P = 0.044), and triglycerides (0.028 [0.003– 0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008 – 0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10 –1.25]; P = 3 × 10−6).
CONCLUSIONS
FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
doi:10.2337/db07-1466
PMCID: PMC3073395  PMID: 18346983
10.  Detailed Investigation of the Role of Common and Low-Frequency WFS1 Variants in Type 2 Diabetes Risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 × 10−7 on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01–0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes.
CONCLUSIONS
We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
11.  Detailed investigation of the role of common and low frequency WFS1 variants in type 2 diabetes risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
WFS1 (Wolfram Syndrome 1) SNPs are associated with risk of type 2 diabetes (T2D). Here, we aimed to refine this association and investigate the role of low frequency WFS1 variants in T2D risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions and conserved non-coding sequences in 24 T2D cases and 68 controls, selected tagging SNPs, and genotyped these in 959 UK T2D cases and 1386 controls. The same genomic regions were sequenced in 1235 T2D cases and 1668 controls to compare the frequency of rarer variants between cases and controls.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ UTR rs1046320 (P=0.008); OR=0.84, P=6.59 × 10−7 on further replication in 3753 cases and 4198 controls. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2=0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (MAF<0.01) non-synonymous variants between T2D cases and controls (P=0.79). Two intermediate frequency (MAF 0.01-0.05) non-synonymous changes also showed no statistical association with T2D.
CONCLUSION
We identified six highly correlated SNPs that show strong and comparable associations with risk of T2D association but further refinement of these associations will require large sample sizes (>100,000), or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on T2D risk in white UK populations, highlighting the complexities of undertaking association studies with low frequency variants identified by re-sequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
12.  Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus 
PLoS ONE  2010;5(11):e14040.
Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.
doi:10.1371/journal.pone.0014040
PMCID: PMC2987816  PMID: 21124985
13.  Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations 
American Journal of Epidemiology  2009;170(5):537-545.
For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
Bayes theorem; diabetes mellitus, type 2; meta-analysis; models, genetic; polymorphism, genetic; population characteristics
14.  Linkage Disequilibrium Mapping of the Replicated Type 2 Diabetes Linkage Signal on Chromosome 1q 
Diabetes  2009;58(7):1704-1709.
OBJECTIVE
Linkage of the chromosome 1q21–25 region to type 2 diabetes has been demonstrated in multiple ethnic groups. We performed common variant fine-mapping across a 23-Mb interval in a multiethnic sample to search for variants responsible for this linkage signal.
RESEARCH DESIGN AND METHODS
In all, 5,290 single nucleotide polymorphisms (SNPs) were successfully genotyped in 3,179 type 2 diabetes case and control subjects from eight populations with evidence of 1q linkage. Samples were ascertained using strategies designed to enhance power to detect variants causal for 1q linkage. After imputation, we estimate ∼80% coverage of common variation across the region (r 2 > 0.8, Europeans). Association signals of interest were evaluated through in silico replication and de novo genotyping in ∼8,500 case subjects and 12,400 control subjects.
RESULTS
Association mapping of the 23-Mb region identified two strong signals, both of which were restricted to the subset of European-descent samples. The first mapped to the NOS1AP (CAPON) gene region (lead SNP: rs7538490, odds ratio 1.38 [95% CI 1.21–1.57], P = 1.4 × 10−6, in 999 case subjects and 1,190 control subjects); the second mapped within an extensive region of linkage disequilibrium that includes the ASH1L and PKLR genes (lead SNP: rs11264371, odds ratio 1.48 [1.18–1.76], P = 1.0 × 10−5, under a dominant model). However, there was no evidence for association at either signal on replication, and, across all data (>24,000 subjects), there was no indication that these variants were causally related to type 2 diabetes status.
CONCLUSIONS
Detailed fine-mapping of the 23-Mb region of replicated linkage has failed to identify common variant signals contributing to the observed signal. Future studies should focus on identification of causal alleles of lower frequency and higher penetrance.
doi:10.2337/db09-0081
PMCID: PMC2699860  PMID: 19389826
15.  Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth 
Diabetes  2009;58(6):1428-1433.
OBJECTIVE
Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight.
RESEARCH DESIGN AND METHODS
We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring.
RESULTS
We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11–31], P = 2 × 10−5, and 14 g [4–23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39–120) lighter at birth than the 8% carrying none (Ptrend = 5 × 10−7). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus.
CONCLUSIONS
Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
doi:10.2337/db08-1739
PMCID: PMC2682672  PMID: 19228808
16.  Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach 
Diabetes  2009;58(6):1463-1467.
OBJECTIVE
Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.
RESEARCH DESIGN AND METHODS
We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.
RESULTS
After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top Padj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.
CONCLUSIONS
Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
doi:10.2337/db08-1378
PMCID: PMC2682674  PMID: 19252133
17.  Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study 
Diabetes  2009;58(6):1434-1439.
OBJECTIVE
Metformin is actively transported into the liver by the organic cation transporter (OCT)1 (encoded by SLC22A1). In 12 normoglycemic individuals, reduced-function variants in SLC22A1 were shown to decrease the ability of metformin to reduce glucose excursion in response to oral glucose. We assessed the effect of two common loss-of-function polymorphisms in SLC22A1 on metformin response in a large cohort of patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS
The Diabetes Audit and Research in Tayside Scotland (DARTS) database includes prescribing and biochemistry information and clinical phenotypes of all patients with diabetes within Tayside, Scotland, from 1992 onwards. R61C and 420del variants of SLC22A1 were genotyped in 3,450 patients with type 2 diabetes who were incident users of metformin. We assessed metformin response by modeling the maximum A1C reduction in 18 months after starting metformin and investigated whether a treatment target of A1C <7% was achieved. Sustained metformin effect on A1C between 6 and 42 months was also assessed, as was the time to metformin monotherapy failure. Covariates were SLC22A1 genotype, BMI, average drug dose, adherence, and creatinine clearance.
RESULTS
A total of 1,531 patients were identified with a definable metformin response. R61C and 420del variants did not affect the initial A1C reduction (P = 0.47 and P = 0.92, respectively), the chance of achieving a treatment target (P = 0.83 and P = 0.36), the average A1C on monotherapy up to 42 months (P = 0.44 and P = 0.75), or the hazard of monotherapy failure (P = 0.85 and P = 0.56).
CONCLUSIONS
The SLC22A1 loss-of-function variants, R61C and 420del, do not attenuate the A1C reduction achieved by metformin in patients with type 2 diabetes.
doi:10.2337/db08-0896
PMCID: PMC2682689  PMID: 19336679
18.  Underlying genetic models of inheritance in established type 2 diabetes associations 
American journal of epidemiology  2009;170(5):537-545.
For most associations of common polymorphisms with common diseases, the genetic model of inheritance is unknown. We extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations for type 2 diabetes. For 13 polymorphisms, the data fit very well to an additive model, for 4 polymorphisms the data were consistent with either an additive or dominant model, and for 2 polymorphisms with an additive or recessive model of inheritance for the diabetes risk allele. Results were robust to using different priors and after excluding data where index polymorphisms had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that are very similar to those previously reported based on fixed or random effects models, but uncertainty about several of the effects was substantially larger. We also examined the extent of between-study heterogeneity in the genetic model and found generally small values of the between-study deviation for the genetic model parameter. Heterosis could not be excluded in 4 SNPs. Information on the genetic model of robustly replicated GWA-derived association signals may be useful for predictive modeling, and for designing biological and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
19.  Regulation of Fto/Ftm gene expression in mice and humans 
Two recent, large GWAS in European populations have associated a ∼47 Kb region that contains part of the FTO gene with high BMI. The functions of FTO and adjacent FTM in human biology are not clear. We examined expression of these genes in organs of mice segregating for monogenic obesity mutations, exposed to under/over feeding, and to 4 °C. Fto/Ftm expression was reduced in mesenteric adipose tissue of mice segregating for the Ay, Lepob, Leprdb, Cpefat or tub mutations and there was a similar trend in other tissues. These effects were not due to adiposity per se. Hypothalamic Fto and Ftm expression were decreased by fasting in lean and obese animals and by cold exposure in lean mice. The fact that responses of Fto and Ftm expression to these manipulations were almost indistinguishable suggested that the genes might be co-regulated. The putative overlapping regulatory region contains at least 2 canonical CUTL1 binding sites. One of these nominal CUTL1 sites includes rs8050136, a SNP associated with high body mass. The A allele of rs8050136 – associated with lower body mass than the C allele – preferentially bound CUTL1 in human fibroblast DNA. 70% knockdown of CUTL1 expression in human fibroblasts decreased FTO and FTM expression by 90 and 65 %, respectively. Animals and humans with various genetic interruptions of FTO or FTM have phenotypes reminiscent of aspects of the Bardet-Biedl obesity syndrome, a confirmed “ciliopathy”. FTM has recently been shown to be a ciliary basal body protein.
doi:10.1152/ajpregu.00839.2007
PMCID: PMC2808712  PMID: 18256137
obesity; hypothalamus; adipose tissue; CUTL1
20.  Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes 
Human Molecular Genetics  2009;19(3):535-544.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
doi:10.1093/hmg/ddp522
PMCID: PMC2798726  PMID: 19933169
21.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE—Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS—Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS—Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ∼1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91–1.19]).
CONCLUSIONS—These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231
22.  Assessing the Combined Impact of 18 Common Genetic Variants of Modest Effect Sizes on Type 2 Diabetes Risk 
Diabetes  2008;57(11):3129-3135.
OBJECTIVES—Genome-wide association studies have dramatically increased the number of common genetic variants that are robustly associated with type 2 diabetes. A possible clinical use of this information is to identify individuals at high risk of developing the disease, so that preventative measures may be more effectively targeted. Here, we assess the ability of 18 confirmed type 2 diabetes variants to differentiate between type 2 diabetic case and control subjects.
RESEARCH DESIGN AND METHODS—We assessed index single nucleotide polymorphisms (SNPs) for the 18 independent loci in 2,598 control subjects and 2,309 case subjects from the Genetics of Diabetes Audit and Research Tayside Study. The discriminatory ability of the combined SNP information was assessed by grouping individuals based on number of risk alleles carried and determining relative odds of type 2 diabetes and by calculating the area under the receiver-operator characteristic curve (AUC).
RESULTS—Individuals carrying more risk alleles had a higher risk of type 2 diabetes. For example, 1.2% of individuals with >24 risk alleles had an odds ratio of 4.2 (95% CI 2.11–8.56) against the 1.8% with 10–12 risk alleles. The AUC (a measure of discriminative accuracy) for these variants was 0.60. The AUC for age, BMI, and sex was 0.78, and adding the genetic risk variants only marginally increased this to 0.80.
CONCLUSIONS—Currently, common risk variants for type 2 diabetes do not provide strong predictive value at a population level. However, the joint effect of risk variants identified subgroups of the population at substantially different risk of disease. Further studies are needed to assess whether individuals with extreme numbers of risk alleles may benefit from genetic testing.
doi:10.2337/db08-0504
PMCID: PMC2570411  PMID: 18591388
23.  Low Frequency Variants in the Exons Only Encoding Isoform A of HNF1A Do Not Contribute to Susceptibility to Type 2 Diabetes 
PLoS ONE  2009;4(8):e6615.
Background
There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.
Methodology and Principal Findings
We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.
Conclusions and Significance
We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.
doi:10.1371/journal.pone.0006615
PMCID: PMC2720540  PMID: 19672314
24.  FTO Gene Variants are Strongly Associated with Type 2 Diabetes but only weakly with Obesity in South Asian Indians 
Diabetologia  2008;52(2):247-252.
Background
Variants in FTO (fat mass and obesity associated) gene are associated with obesity and type 2 diabetes (T2D) in white Europeans. These associations are not consistent in Asians and there are few reports in South Asian Indians who develop T2D at a much lower body mass index (BMI) than that in the white Europeans.
Aims and hypothesis
We studied the association of FTO variants with T2D and measures of obesity in South Asian Indians in Pune, India.
Methods
We genotyped by sequencing, two SNPs rs9939609 and rs7191344, in the FTO gene in 1453 type 2 diabetes patients and 1361 controls and a further 961 population based individuals from India .
Results
We observed a strong association of the minor allele A at rs9939609 with T2D (OR per allele =1.26 [95% CI, 1.13-1.40], P=3×10-5). The variant was also associated with BMI but this association appeared to be weaker (0.06SDs; 95%CIs:0.01-0.10, p=0.017) than the previously reported effect in Europeans (0.10SDs 95%CIs:0.09-0.12). Unlike in the Europeans, the association with T2D remained when adjusting for BMI (OR per allele for T2D=1.21 (95% CI, 1.06-1.37); P=4.0 × 10-3). Similar results were obtained when using waist circumference and other anthropometric parameters.
Conclusions
Our study replicates the strong association of FTO variants with type 2 diabetes in South Asian Indians but suggests that the association of FTO with T2D in them might operate through mechanisms other than obesity. This could imply a fundamental difference between Indians and Europeans in the mechanisms linking body size with T2D.
doi:10.1007/s00125-008-1186-6
PMCID: PMC2658005  PMID: 19005641
FTO; type 2 diabetes mellitus; polymorphisms; ethnicity; body mass index
25.  Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants 
Diabetes  2008;57(11):3161-3165.
OBJECTIVE
Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal.
RESEARCH DESIGN AND METHODS
Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations.
RESULTS
Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 × 10−6). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] ~1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91-1.19]).
CONCLUSIONS
These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.
doi:10.2337/db08-0719
PMCID: PMC2570416  PMID: 18728231

Results 1-25 (31)