PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent 
PLoS ONE  2014;9(6):e98608.
Introduction
Most studies seeking common variant associations with type 2 diabetes (T2D) have focused on individuals of European ancestry. These discoveries need to be evaluated in other major ancestral groups, to understand ethnic differences in predisposition, and establish whether these contribute to variation in T2D prevalence and presentation. This study aims to establish whether common variants conferring T2D-risk in Europeans contribute to T2D-susceptibility in the South Asian population of Sri Lanka.
Methodology
Lead single nucleotide polymorphism (SNPs) at 37 T2D-risk loci attaining genome-wide significance in Europeans were genotyped in 878 T2D cases and 1523 normoglycaemic controls from Sri Lanka. Association testing was performed by logistic regression adjusting for age and sex and by the Cochran-Mantel-Haenszel test after stratifying according to self-identified ethnolinguistic subgroup. A weighted genetic risk score was generated to examine the combined effect of these SNPs on T2D-risk in the Sri Lankan population.
Results
Of the 36 SNPs passing quality control, sixteen showed nominal (p<0.05) association in Sri Lankan samples, fifteen of those directionally-consistent with the original signal. Overall, these association findings were robust to analyses that accounted for membership of ethnolinguistic subgroups. Overall, the odds ratios for 31 of the 36 SNPs were directionally-consistent with those observed in Europeans (p = 3.2×10−6). Allelic odds ratios and risk allele frequencies in Sri Lankan subjects were not systematically different to those reported in Europeans. Genetic risk score and risk of T2D were strongly related in Sri Lankans (per allele OR 1.10 [95%CI 1.08–1.13], p = 1.2×10−17).
Conclusion
Our data indicate that most T2D-risk variants identified in Europeans have similar effects in South Asians from Sri Lanka, and that systematic difference in common variant associations are unlikely to explain inter-ethnic differences in prevalence or presentation of T2D.
doi:10.1371/journal.pone.0098608
PMCID: PMC4057178  PMID: 24926958
2.  Mapping cis- and trans-regulatory effects across multiple tissues in twins 
Nature genetics  2012;44(10):1084-1089.
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many eQTL studies typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis-effect on expression cannot be accounted for by common cis-variants, a finding which exposes the contribution of low frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene and identify several replicating trans-variants which act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
doi:10.1038/ng.2394
PMCID: PMC3784328  PMID: 22941192
3.  Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes 
Diabetes  2012;61(7):1726-1733.
The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca2+ sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
doi:10.2337/db11-1516
PMCID: PMC3379663  PMID: 22492527
4.  Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue 
PLoS Genetics  2012;8(5):e1002704.
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population.
Author Summary
Genetic information is transmitted to the cell only through RNA molecules. A special class of RNAs is comprised of the small (up to 30 nucleotide) ones, known to be potent regulators of various cellular processes. At the same time, they have not been as widely studied as messenger RNAs—we do not know how much variation in their sequence and expression level occurs naturally in human populations or how this variability influences other traits. We measured small RNA levels and genetic variability in fat tissue from 131 individuals by high-throughput sequencing. We could associate the expression levels with genetic background of the individuals, as well as changes in metabolic traits. Surprisingly, we found no large scale influence of small RNA variation on mRNA levels, their main regulatory target. Overall, our study is the first to give a quantitative picture of the naturally occurring variation in these important regulatory molecules in human fat tissue.
doi:10.1371/journal.pgen.1002704
PMCID: PMC3349731  PMID: 22589741
5.  Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes 
PLoS Genetics  2012;8(2):e1002505.
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Author Summary
Metabolic Syndrome (MetS) is a highly prevalent disorder with considerable public health concern, but its underlying genetic factors remain elusive. Given that most cellular components exert their functions through interactions with other cellular components, even the largest of genome-wide association (GWA) studies may often not detect their effects, nor necessarily provide insight into the complex molecular mechanisms of the disease. Rather than focusing on individual genes, the analysis of coexpression networks can be used for finding clusters (modules) of correlated expression levels across samples. In this study, we used a gene network–based approach for integrating clinical MetS, genotypic, and gene expression data from abdominal and gluteal adipose tissue and whole blood. We identified modules of genes related to MetS significantly enriched for immune response and oxidative phosphorylation pathways. We tested SNPs for association with MetS–associated expression (eSNPs), and tested prioritised eSNPs for association with MetS–related phenotypes in two large-scale GWA datasets. We identified two loci, neither of which had reached genome-wide significance levels in GWAs, associated with expression levels of RARRES2 and HLA-DRB1 and with MetS–related phenotypes, demonstrating that the integrated analysis of genotype and expression data from relevant multiple tissues can identify novel associations with complex traits such as MetS.
doi:10.1371/journal.pgen.1002505
PMCID: PMC3285582  PMID: 22383892
6.  Variability of gene expression profiles in human blood and lymphoblastoid cell lines 
BMC Genomics  2010;11:96.
Background
Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets.
Results
Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range ρ = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10-16) with higher variability (P < 1*10-16) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (ρ = 0.83; ρ = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (ρ = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs.
Conclusion
Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies.
doi:10.1186/1471-2164-11-96
PMCID: PMC2841682  PMID: 20141636
7.  MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes 
BMC Medical Genomics  2009;2:54.
Background
MicroRNAs (miRNAs) are non-coding RNA molecules involved in post-transcriptional control of gene expression of a wide number of genes, including those involved in glucose homeostasis. Type 2 diabetes (T2D) is characterized by hyperglycaemia and defects in insulin secretion and action at target tissues. We sought to establish differences in global miRNA expression in two insulin-target tissues from inbred rats of spontaneously diabetic and normoglycaemic strains.
Methods
We used a miRNA microarray platform to measure global miRNA expression in two insulin-target tissues: liver and adipose tissue from inbred rats of spontaneously diabetic (Goto-Kakizaki [GK]) and normoglycaemic (Brown-Norway [BN]) strains which are extensively used in genetic studies of T2D. MiRNA data were integrated with gene expression data from the same rats to investigate how differentially expressed miRNAs affect the expression of predicted target gene transcripts.
Results
The expression of 170 miRNAs was measured in liver and adipose tissue of GK and BN rats. Based on a p-value for differential expression between GK and BN, the most significant change in expression was observed for miR-125a in liver (FC = 5.61, P = 0.001, Padjusted = 0.10); this overexpression was validated using quantitative RT-PCR (FC = 13.15, P = 0.0005). MiR-125a also showed over-expression in the GK vs. BN analysis within adipose tissue (FC = 1.97, P = 0.078, Padjusted = 0.99), as did the previously reported miR-29a (FC = 1.51, P = 0.05, Padjusted = 0.99). In-silico tools assessing the biological role of predicted miR-125a target genes suggest an over-representation of genes involved in the MAPK signaling pathway. Gene expression analysis identified 1308 genes with significantly different expression between GK and BN rats (Padjusted < 0.05): 233 in liver and 1075 in adipose tissue. Pathways related to glucose and lipid metabolism were significantly over-represented among these genes. Enrichment analysis suggested that differentially expressed genes in GK compared to BN included more predicted miR-125a target genes than would be expected by chance in adipose tissue (FDR = 0.006 for up-regulated genes; FDR = 0.036 for down-regulated genes) but not in liver (FDR = 0.074 for up-regulated genes; FDR = 0.248 for down-regulated genes).
Conclusion
MiR-125a is over-expressed in liver in hyperglycaemic GK rats relative to normoglycaemic BN rats, and our array data also suggest miR-125a is over-expressed in adipose tissue. We demonstrate the use of in-silico tools to provide the basis for further investigation of the potential role of miR-125a in T2D. In particular, the enrichment of predicted miR-125a target genes among differentially expressed genes has identified likely target genes and indicates that integrating global miRNA and mRNA expression data may give further insights into miRNA-mediated regulation of gene expression.
doi:10.1186/1755-8794-2-54
PMCID: PMC2754496  PMID: 19689793
8.  A System for Information Management in BioMedical Studies—SIMBioMS 
Bioinformatics  2009;25(20):2768-2769.
Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented.
Availability: The source code, documentation and initialization scripts are available at http://simbioms.org.
Contact: support@simbioms.org; mariak@ebi.ac.uk
doi:10.1093/bioinformatics/btp420
PMCID: PMC2759553  PMID: 19633095
9.  PASSIM – an open source software system for managing information in biomedical studies 
BMC Bioinformatics  2007;8:52.
Background
One of the crucial aspects of day-to-day laboratory information management is collection, storage and retrieval of information about research subjects and biomedical samples. An efficient link between sample data and experiment results is absolutely imperative for a successful outcome of a biomedical study. Currently available software solutions are largely limited to large-scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but often implies sufficient investment of time, effort and funds, which are not always available. There is a clear need for lightweight open source systems for patient and sample information management.
Results
We present a web-based tool for submission, management and retrieval of sample and research subject data. The system secures confidentiality by separating anonymized sample information from individuals' records. It is simple and generic, and can be customised for various biomedical studies. Information can be both entered and accessed using the same web interface. User groups and their privileges can be defined. The system is open-source and is supplied with an on-line tutorial and necessary documentation. It has proven to be successful in a large international collaborative project.
Conclusion
The presented system closes the gap between the need and the availability of lightweight software solutions for managing information in biomedical studies involving human research subjects.
doi:10.1186/1471-2105-8-52
PMCID: PMC1803798  PMID: 17291344

Results 1-9 (9)