PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes 
PLoS Genetics  2012;8(2):e1002505.
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Author Summary
Metabolic Syndrome (MetS) is a highly prevalent disorder with considerable public health concern, but its underlying genetic factors remain elusive. Given that most cellular components exert their functions through interactions with other cellular components, even the largest of genome-wide association (GWA) studies may often not detect their effects, nor necessarily provide insight into the complex molecular mechanisms of the disease. Rather than focusing on individual genes, the analysis of coexpression networks can be used for finding clusters (modules) of correlated expression levels across samples. In this study, we used a gene network–based approach for integrating clinical MetS, genotypic, and gene expression data from abdominal and gluteal adipose tissue and whole blood. We identified modules of genes related to MetS significantly enriched for immune response and oxidative phosphorylation pathways. We tested SNPs for association with MetS–associated expression (eSNPs), and tested prioritised eSNPs for association with MetS–related phenotypes in two large-scale GWA datasets. We identified two loci, neither of which had reached genome-wide significance levels in GWAs, associated with expression levels of RARRES2 and HLA-DRB1 and with MetS–related phenotypes, demonstrating that the integrated analysis of genotype and expression data from relevant multiple tissues can identify novel associations with complex traits such as MetS.
doi:10.1371/journal.pgen.1002505
PMCID: PMC3285582  PMID: 22383892
2.  MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven 
PLoS ONE  2011;6(11):e27338.
To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets.
doi:10.1371/journal.pone.0027338
PMCID: PMC3216936  PMID: 22102887
3.  A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection 
PLoS Genetics  2011;7(9):e1002270.
We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11
Author Summary
Physiological concentrations of metabolites—small molecules involved in biochemical processes in living systems—can be measured and used to diagnose and predict disease states. A common goal is to detect and clinically exploit statistical differences in metabolite concentrations between diseased and healthy individuals. As a basis for the design and interpretation of case-control studies, it is useful to have a characterization of metabolic diversity amongst healthy individuals, some of which stems from inter-individual genetic variation. When a single genetic locus has a sufficiently strong effect on metabolism, its genomic position can be determined by collecting metabolite concentration data and genome-wide genotype data on a set of individuals and searching for associations between the two data sets—a so-called metabolite quantitative trait locus (mQTL) study. By so tracing mQTLs, we can identify the genetic drivers of metabolism, characterize how the nature or quantity of the corresponding expressed protein(s) feeds forward to influence metabolite levels, and specify disease-predictive models that incorporate mutual dependence amongst genetics, environment, and metabolism.
doi:10.1371/journal.pgen.1002270
PMCID: PMC3169529  PMID: 21931564
A comprehensive variation map of the human metabolome identifies genetic and stable-environmental sources as major drivers of metabolite concentrations. The data suggest that sample sizes of a few thousand are sufficient to detect metabolite biomarkers predictive of disease.
We designed a longitudinal twin study to characterize the genetic, stable-environmental, and longitudinally fluctuating influences on metabolite concentrations in two human biofluids—urine and plasma—focusing specifically on the representative subset of metabolites detectable by 1H nuclear magnetic resonance (1H NMR) spectroscopy.We identified widespread genetic and stable-environmental influences on the (urine and plasma) metabolomes, with (30 and 42%) attributable on average to familial sources, and (47 and 60%) attributable to longitudinally stable sources.Ten of the metabolites annotated in the study are estimated to have >60% familial contribution to their variation in concentration.Our findings have implications for the design and interpretation of 1H NMR-based molecular epidemiology studies. On the basis of the stable component of variation quantified in the current paper, we specified a model of disease association under which we inferred that sample sizes of a few thousand should be sufficient to detect disease-predictive metabolite biomarkers.
Metabolites are small molecules involved in biochemical processes in living systems. Their concentration in biofluids, such as urine and plasma, can offer insights into the functional status of biological pathways within an organism, and reflect input from multiple levels of biological organization—genetic, epigenetic, transcriptomic, and proteomic—as well as from environmental and lifestyle factors. Metabolite levels have the potential to indicate a broad variety of deviations from the ‘normal' physiological state, such as those that accompany a disease, or an increased susceptibility to disease. A number of recent studies have demonstrated that metabolite concentrations can be used to diagnose disease states accurately. A more ambitious goal is to identify metabolite biomarkers that are predictive of future disease onset, providing the possibility of intervention in susceptible individuals.
If an extreme concentration of a metabolite is to serve as an indicator of disease status, it is usually important to know the distribution of metabolite levels among healthy individuals. It is also useful to characterize the sources of that observed variation in the healthy population. A proportion of that variation—the heritable component—is attributable to genetic differences between individuals, potentially at many genetic loci. An effective, molecular indicator of a heritable, complex disease is likely to have a substantive heritable component. Non-heritable biological variation in metabolite concentrations can arise from a variety of environmental influences, such as dietary intake, lifestyle choices, general physical condition, composition of gut microflora, and use of medication. Variation across a population in stable-environmental influences leads to long-term differences between individuals in their baseline metabolite levels. Dynamic environmental pressures lead to short-term fluctuations within an individual about their baseline level. A metabolite whose concentration changes substantially in response to short-term pressures is relatively unlikely to offer long-term prediction of disease. In summary, the potential suitability of a metabolite to predict disease is reflected by the relative contributions of heritable and stable/unstable-environmental factors to its variation in concentration across the healthy population.
Studies involving twins are an established technique for quantifying the heritable component of phenotypes in human populations. Monozygotic (MZ) twins share the same DNA genome-wide, while dizygotic (DZ) twins share approximately half their inherited DNA, as do ordinary siblings. By comparing the average extent of phenotypic concordance within MZ pairs to that within DZ pairs, it is possible to quantify the heritability of a trait, and also to quantify the familiality, which refers to the combination of heritable and common-environmental effects (i.e., environmental influences shared by twins in a pair). In addition to incorporating twins into the study design, it is useful to quantify the phenotype in some individuals at multiple time points. The longitudinal aspect of such a study allows environmental effects to be decomposed into those that affect the phenotype over the short term and those that exert stable influence.
For the current study, urine and blood samples were collected from a cohort of MZ and DZ twins, with some twins donating samples on two occasions several months apart. Samples were analysed by 1H nuclear magnetic resonance (1H NMR) spectroscopy—an untargeted, discovery-driven technique for quantifying metabolite concentrations in biological samples. The application of 1H NMR to a biological sample creates a spectrum, made up of multiple peaks, with each peak's size quantitatively representing the concentration of its corresponding hydrogen-containing metabolite.
In each biological sample in our study, we extracted a full set of peaks, and thereby quantified the concentrations of all common plasma and urine metabolites detectable by 1H NMR. We developed bespoke statistical methods to decompose the observed concentration variation at each metabolite peak into that originating from familial, individual-environmental, and unstable-environmental sources.
We quantified the variability landscape across all common metabolite peaks in the urine and plasma 1H NMR metabolomes. We annotated a subset of peaks with a total of 65 metabolites; the variance decompositions for these are shown in Figure 1. Ten metabolites' concentrations were estimated to have familial contributions in excess of 60%. The average proportion of stable variation across all extracted metabolite peaks was estimated to be 47% in the urine samples and 60% in the plasma samples; the average estimated familiality was 30% for urine and 42% for plasma. These results comprise the first quantitative variation map of the 1H NMR metabolome. The identification and quantification of substantive widespread stability provides support for the use of these biofluids in molecular epidemiology studies. On the basis of our findings, we performed power calculations for a hypothetical study searching for predictive disease biomarkers among 1H NMR-detectable urine and plasma metabolites. Our calculations suggest that sample sizes of 2000–5000 should allow reliable identification of disease-predictive metabolite concentrations explaining 5–10% of disease risk, while greater sample sizes of 5000–20 000 would be required to identify metabolite concentrations explaining 1–2% of disease risk.
1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non-identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common-environmental), individual-environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual-environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker-discovery studies. We provide a power-calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying predisposition to disease.
doi:10.1038/msb.2011.57
PMCID: PMC3202796  PMID: 21878913
biomarker; 1H nuclear magnetic resonance spectroscopy; metabolome-wide association study; top-down systems biology; variance decomposition
BMC Genomics  2010;11:96.
Background
Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets.
Results
Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range ρ = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10-16) with higher variability (P < 1*10-16) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (ρ = 0.83; ρ = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (ρ = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs.
Conclusion
Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies.
doi:10.1186/1471-2164-11-96
PMCID: PMC2841682  PMID: 20141636

Results 1-5 (5)