PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Interictal EEG spikes identify the region of seizure onset in some, but not all pediatric epilepsy patients 
Epilepsia  2009;51(4):592-601.
Purpose
The role of sharps and spikes, interictal epileptiform discharges (IEDs), in guiding epilepsy surgery in children remains controversial, particularly with intracranial EEG (IEEG). While ictal recording is the mainstay of localizing epileptic networks for surgical resection, current practice dictates removing regions generating frequent IEDs if they are near the ictal onset zone. Indeed, past studies suggest an inconsistent relationship between IED and seizure onset location, though these studies were based upon relatively short EEG epochs.
Methods
We employ a previously validated, computerized spike detector, to measure and localize IED activity over prolonged, representative segments of IEEG recorded from 19 children with intractable, mostly extra temporal lobe epilepsy. Approximately 8 hours of IEEG, randomly selected thirty-minute segments of continuous interictal IEEG per patient were analyzed over all intracranial electrode contacts.
Results
When spike frequency was averaged over the 16-time segments, electrodes with the highest mean spike frequency were found to be within the seizure onset region in 11 of 19 patients. There was significant variability between individual 30-minute segments in these patients, indicating that large statistical samples of interictal activity were required for improved localization. Low voltage fast EEG at seizure onset was the only clinical factor predicting IED localization to the seizure onset region.
Conclusions
Our data suggest that automated IED detection over multiple representative samples of IEEG may be of utility in planning epilepsy surgery for children with intractable epilepsy. Further research is required to better determine which patients may benefit from this technique a priori.
doi:10.1111/j.1528-1167.2009.02306.x
PMCID: PMC2907216  PMID: 19780794
Spike density; intracranial EEG; Seizure onset; Pediatric Epilepsy
2.  Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females 
Brain  2009;132(6):1563-1576.
Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed Arx allele were generated and crossed to Dlx5/6CRE-IRES-GFP(Dlx5/6CIG) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx−/y;Dlx5/6CIG (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele (Arx−/+;Dlx5/6CIG) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders.
doi:10.1093/brain/awp107
PMCID: PMC2685924  PMID: 19439424
Epilepsy; development; conditional knockout; genetic model; interneurons

Results 1-2 (2)