PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  How complete are current yeast and human protein-interaction networks? 
Genome Biology  2006;7(11):120.
How can protein-interaction networks can be made more complete?
We estimate the full yeast protein-protein interaction network to contain 37,800-75,500 interactions and the human network 154,000-369,000, but owing to a high false-positive rate, current maps are roughly only 50% and 10% complete, respectively. Paradoxically, releasing raw, unfiltered assay data might help separate true from false interactions.
doi:10.1186/gb-2006-7-11-120
PMCID: PMC1794583  PMID: 17147767
2.  Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes 
Genome Biology  2006;7(1):R6.
Spotted cell microarrays were developed for measuring cellular phenotypes on a large scale and used to identify genes involved in the response of yeast to mating pheromone.
We have developed spotted cell microarrays for measuring cellular phenotypes on a large scale. Collections of cells are printed, stained for subcellular features, then imaged via automated, high-throughput microscopy, allowing systematic phenotypic characterization. We used this technology to identify genes involved in the response of yeast to mating pheromone. Besides morphology assays, cell microarrays should be valuable for high-throughput in situ hybridization and immunoassays, enabling new classes of genetic assays based on cell imaging.
doi:10.1186/gb-2006-7-1-r6
PMCID: PMC1431703  PMID: 16507139

Results 1-2 (2)