PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Integrating shotgun proteomics and mRNA expression data to improve protein identification 
Bioinformatics  2009;25(11):1397-1403.
Motivation: Tandem mass spectrometry (MS/MS) offers fast and reliable characterization of complex protein mixtures, but suffers from low sensitivity in protein identification. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other information available, e.g. the probability of a protein's presence is likely to correlate with its mRNA concentration.
Results: We develop a Bayesian score that estimates the posterior probability of a protein's presence in the sample given its identification in an MS/MS experiment and its mRNA concentration measured under similar experimental conditions. Our method, MSpresso, substantially increases the number of proteins identified in an MS/MS experiment at the same error rate, e.g. in yeast, MSpresso increases the number of proteins identified by ∼40%. We apply MSpresso to data from different MS/MS instruments, experimental conditions and organisms (Escherichia coli, human), and predict 19–63% more proteins across the different datasets. MSpresso demonstrates that incorporating prior knowledge of protein presence into shotgun proteomics experiments can substantially improve protein identification scores.
Availability and Implementation: Software is available upon request from the authors. Mass spectrometry datasets and supplementary information are available from http://www.marcottelab.org/MSpresso/.
Contact: marcotte@icmb.utexas.edu; miranker@cs.utexas.edu
Supplementary Information: Supplementary data website: http://www.marcottelab.org/MSpresso/.
doi:10.1093/bioinformatics/btp168
PMCID: PMC2682515  PMID: 19318424
2.  mspire: mass spectrometry proteomics in Ruby 
Bioinformatics  2008;24(23):2796-2797.
Summary: Mass spectrometry-based proteomics stands to gain from additional analysis of its data, but its large, complex datasets make demands on speed and memory usage requiring special consideration from scripting languages. The software library ‘mspire’—developed in the Ruby programming language—offers quick and memory-efficient readers for standard xml proteomics formats, converters for intermediate file types in typical proteomics spectral-identification work flows (including the Bioworks .srf format), and modules for the calculation of peptide false identification rates.
Availability: Freely available at http://mspire.rubyforge.org. Additional data models, usage information, and methods available at http://bioinformatics.icmb.utexas.edu/mspire
Contact: marcotte@icmb.utexas.edu
doi:10.1093/bioinformatics/btn513
PMCID: PMC2639276  PMID: 18930952

Results 1-2 (2)