PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit 
Molecular cell  2010;39(2):196-208.
In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adapter Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation.
doi:10.1016/j.molcel.2010.06.018
PMCID: PMC2925414  PMID: 20670889
ribosome; ribosome biogenesis; EFL1; NMD3; TIF6
2.  Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0 
The Journal of Cell Biology  2009;186(6):849-862.
The step by step assembly process from preribosome in the nucleus to translation-competent 60S ribosome subunit in the cytoplasm is revealed (also see Kemmler et al. in this issue).
The ribosome stalk is essential for recruitment of translation factors. In yeast, P0 and Rpl12 correspond to bacterial L10 and L11 and form the stalk base of mature ribosomes, whereas Mrt4 is a nuclear paralogue of P0. In this study, we show that the dual-specificity phosphatase Yvh1 is required for the release of Mrt4 from the pre-60S subunits. Deletion of YVH1 leads to the persistence of Mrt4 on pre-60S subunits in the cytoplasm. A mutation in Mrt4 at the protein–RNA interface bypasses the requirement for Yvh1. Pre-60S subunits associated with Yvh1 contain Rpl12 but lack both Mrt4 and P0. These results suggest a linear series of events in which Yvh1 binds to the pre-60S subunit to displace Mrt4. Subsequently, P0 loads onto the subunit to assemble the mature stalk, and Yvh1 is released. The initial assembly of the ribosome with Mrt4 may provide functional compartmentalization of ribosome assembly in addition to the spatial separation afforded by the nuclear envelope.
doi:10.1083/jcb.200904110
PMCID: PMC2753163  PMID: 19797078

Results 1-2 (2)