PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Group II Intron Protein Localization and Insertion Sites Are Affected by Polyphosphate 
PLoS Biology  2008;6(6):e150.
Mobile group II introns consist of a catalytic intron RNA and an intron-encoded protein with reverse transcriptase activity, which act together in a ribonucleoprotein particle to promote DNA integration during intron mobility. Previously, we found that the Lactococcus lactis Ll.LtrB intron-encoded protein (LtrA) expressed alone or with the intron RNA to form ribonucleoprotein particles localizes to bacterial cellular poles, potentially accounting for the intron's preferential insertion in the oriC and ter regions of the Escherichia coli chromosome. Here, by using cell microarrays and automated fluorescence microscopy to screen a transposon-insertion library, we identified five E. coli genes (gppA, uhpT, wcaK, ynbC, and zntR) whose disruption results in both an increased proportion of cells with more diffuse LtrA localization and a more uniform genomic distribution of Ll.LtrB-insertion sites. Surprisingly, we find that a common factor affecting LtrA localization in these and other disruptants is the accumulation of intracellular polyphosphate, which appears to bind LtrA and other basic proteins and delocalize them away from the poles. Our findings show that the intracellular localization of a group II intron-encoded protein is a major determinant of insertion-site preference. More generally, our results suggest that polyphosphate accumulation may provide a means of localizing proteins to different sites of action during cellular stress or entry into stationary phase, with potentially wide physiological consequences.
Author Summary
Group II introns are bacterial mobile elements thought to be ancestors of introns—genetic material that is discarded from messenger RNA transcripts—and retroelements—genetic elements and viruses that replicate via reverse transcription—in higher organisms. They propagate by forming a complex consisting of the catalytically active intron RNA and an intron-encoded reverse transcriptase (which converts the RNA to DNA, which can then be reinserted in the host genome). The Ll.LtrB group II intron-encoded protein (LtrA) was found previously to localize to bacterial cellular poles, potentially accounting for the preferential insertion of Ll.LtrB in the replication origin (oriC) and terminus (ter) regions of the Escherichia coli chromosome, which are located near the poles during much of the cell cycle. Here, we identify E. coli genes whose disruption leads both to more diffuse LtrA localization and a more uniform chromosomal distribution of Ll.LtrB-insertion sites, proving that the location of the LtrA protein contributes to insertion-site preference. Surprisingly, we find that LtrA localization in the disruptants is affected by the accumulation of intracellular polyphosphate, which appears to bind basic proteins and delocalize them away from the cellular poles. Thus, polyphosphate, a ubiquitous but enigmatic molecule in prokaryotes and eukaryotes, can localize proteins to different sites of action, with potentially wide physiological consequences.
A novel cell microarray method uncovers connections between group II intron mobility, cell stress, and polyphosphate metabolism, including the finding that polyphosphate can influence intracellular protein localization.
doi:10.1371/journal.pbio.0060150
PMCID: PMC2435150  PMID: 18593213

Results 1-1 (1)