PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  RELATIONSHIP BETWEEN PROPRIOCEPTION AT THE KNEE JOINT AND GAIT ATAXIA IN HSAN III 
Hereditary sensory and autonomic neuropathy type III features a marked ataxic gait that progressively worsens over time. We assessed whether proprioceptive disturbances can explain the ataxia. Proprioception at the knee joint was assessed using passive joint angle matching in 18 patients and 14 age-matched controls; 5 patients with cerebellar ataxia were also studied. Ataxia was quantified using the Brief Ataxia Rating Score, which ranged from 7 to 26/30. Neuropathy patients performed poorly in judging joint position: mean absolute error was 8.7±1.0° and the range was very wide (2.8–18.1°); conversely, absolute error was only 2.7±0.3° (1.6–5.5°) in the controls and 3.0±0.2° (2.1–3.4°) in the cerebellar patients. This error was positively correlated to the degree of ataxia in the neuropathy patients but not the cerebellar patients, suggesting that poor proprioceptive acuity at the knee joint is a major contributor to the ataxic gait associated with hereditary sensory and autonomic neuropathy type III.
doi:10.1002/mds.25482
PMCID: PMC3694996  PMID: 23681701
congenital insensitivity to pain; familial dysautonomia; joint sense; hereditary sensory & autonomic neuropathy; muscle spindles; proprioception; Riley-Day syndrome
2.  Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome? 
Brain  2011;134(11):3198-3208.
The Riley–Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10–30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains their loss of deep tendon reflexes. Moreover, we suggest that their ataxic gait is sensory in origin, due to the loss of functional muscle spindles and hence a compromised sensorimotor control of locomotion.
doi:10.1093/brain/awr168
PMCID: PMC3212710  PMID: 22075519
congenital insensitivity to pain; familial dysautonomia; HSAN; microneurography; muscle spindles; peripheral nerve; Riley–Day syndrome

Results 1-2 (2)