PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
1.  A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila 
BMC Biology  2012;10:56.
Background
Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme.
Results
We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation.
Conclusions
Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.
doi:10.1186/1741-7007-10-56
PMCID: PMC3414785  PMID: 22715942
carboxylesterase; esterase 6; olfaction; pheromone; signal termination
2.  Antennal carboxylesterases in a moth, structural and functional diversity 
Pheromone-degrading enzymes (PDEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly degrading pheromone molecules. Because esters are widespread insect pheromone components, PDEs belonging to the carboxylesterase (CCE) family have been the most studied. However, only two CCEs were both identified at the molecular level and functionally characterized as PDEs until recently. In the pest moth Spodoptera littoralis, we have identified an unsuspected diversity of antennal CCEs, with a total number of 30 genes. Two CCEs, enriched in antennae and belonging to distinct clades, were shown to present different substrate specificities toward pheromone and plant compounds. A same CCE was also shown to efficiently degrade both pheromone and plant components. Our results suggest that the structural evolution of antennal CCEs reflects their functional diversity and that a complex set of CCE-mediated reactions take place is the olfactory organs of moths.
doi:10.4161/cib.19701
PMCID: PMC3419116  PMID: 22896794
lepidoptera; noctuidae; olfaction; carboxylesterase; odorant-degrading enzymes; pheromone

Results 1-2 (2)