Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  Evaluation of Memory Endophenotypes for Association with CLU, CR1 and PICALM variants in African-American and Caucasian Subjects 
Genetic variants at the CLU, CR1 and PICALM loci associate with risk for late-onset Alzheimer’s disease (LOAD) in genome-wide association studies (GWAS). In this study, our aim was to determine whether the LOAD risk variants at these three loci influence memory endophenotypes in African-American and Caucasian subjects.
We pursued an association study between single nucleotide polymorphism (SNP) genotypes at the CLU, CR1 and PICALM loci and memory endophenotypes. We assessed African-American subjects (AA: 44 with LOAD, 224 controls) recruited at Mayo Clinic Florida and Caucasians recruited at Mayo Clinic Minnesota (RS: 372 with LOAD, 1,690 controls) and Florida (JS: 60 with LOAD, 529 controls). SNPs at the LOAD risk loci CLU (rs11136000), CR1 (rs6656401, rs3818361) and PICALM (rs3851179) were genotyped and tested for association with Logical Memory immediate recall (LMIR), delayed recall (LMDR) and percent retention (LMPR) and Visual Reproduction (VRIR, VRDR, VRPR) scores from Wechsler Memory Scale-Revised, using multivariable linear regression analysis, adjusting for age-at-exam, sex, education and APOE ε4 dosage.
We identified nominally significant or suggestive associations between the LOAD risky CR1 variants and worse LMIR scores in the African-Americans (p=0.068 - 0.046, β= −2.7 to −1.2). The LOAD protective CLU variant is associated with better logical memory endophenotypes in the Caucasian subjects (p=0.099-0.027, β= 0.31 to 0.93). The CR1 associations persisted when the control subjects from the African-American series were assessed separately. The CLU associations appeared to be driven by one of the Caucasian series (RS) and were also observed when the control subset from RS was analyzed.
These results suggest for the first time that LOAD risk variants at CR1 may influence memory endophenotypes in African-Americans. Additionally, CLU LOAD protective variant may confer enhanced memory in Caucasians. Although these results would not remain significant after stringent corrections for multiple testing, they need to be considered in the context of the LOAD associations, with which they have biological consistency. They also provide estimates for effect sizes on memory endophenotypes that could guide future studies. The detection of memory effects for these variants in clinically normal subjects, implies that these LOAD risk loci might modify memory prior to clinical diagnosis of AD.
PMCID: PMC3815516  PMID: 23643458
2.  Association of common KIBRA variants with episodic memory and AD risk 
Neurobiology of aging  2010;32(3):557.e1-557.e9.
KIBRA SNP rs17070145 was identified in a GWAS of memory performance, with some but not all follow-up studies confirming association of its T allele with enhanced memory. This allele was associated with reduced Alzheimer's disease (AD) risk in one study, which also found overexpression of KIBRA in memory-related brain regions of ADs. We genotyped rs17070145 and 14 additional SNPs in 2571 LOADs vs. 2842 controls, including African-Americans. We found significantly reduced risk for rs17070145 T allele in the older African-American subjects (p=0.007) and a suggestive effect in the older Caucasian series. Meta-analysis of this allele in >8000 subjects from our and published series showed a suggestive protective effect (p=0.07). Analysis of episodic memory in control subjects did not identify associations with rs17070145, though other SNPs showed significant associations in one series. KIBRA showed evidence of overexpression in the AD temporal cortex (p=0.06) but not cerebellum. These results suggest a modest role for KIBRA as a cognition and AD risk gene, and also highlight the multifactorial complexity of its genetic associations.
PMCID: PMC3065956  PMID: 21185624
Alzheimer's disease; Association studies in genetics; Case control studies
3.  Mild cognitive impairment associated with limbic and neocortical lewy body disease: a clinicopathological study 
Brain  2009;133(2):540-556.
There are little data on the relationship between Lewy body disease and mild cognitive impairment syndromes. The Mayo Clinic aging and dementia databases in Rochester, Minnesota, and Jacksonville, Florida were queried for cases who were diagnosed with mild cognitive impairment between 1 January 1996 and 30 April 2008, were prospectively followed and were subsequently found to have autopsy-proven Lewy body disease. The presence of rapid eye movement sleep behaviour disorder was specifically assessed. Mild cognitive impairment subtypes were determined by clinical impression and neuropsychological profiles, based on prospective operational criteria. The diagnosis of clinically probable dementia with Lewy bodies was based on the 2005 McKeith criteria. Hippocampal volumes, rate of hippocampal atrophy, and proton magnetic resonance spectroscopy were assessed on available magnetic resonance imaging and spectroscopy scans. Eight subjects were identified; six were male. Seven developed dementia with Lewy bodies prior to death; one died characterized as mild cognitive impairment. The number of cases and median age of onset (range) for specific features were: seven with rapid eye movement sleep behaviour disorder—60 years (27–91 years), eight with cognitive symptoms—69 years (62–89 years), eight with mild cognitive impairment—70.5 years (66–91 years), eight with parkinsonism symptoms—71 years (66–92 years), six with visual hallucinations—72 years (64–90 years), seven with dementia—75 years (67–92 years), six with fluctuations in cognition and/or arousal—76 years (68–92 years) and eight dead—76 years (71–94 years). Rapid eye movement sleep behaviour disorder preceded cognitive symptom onset in six cases by a median of 10 years (2–47 years) and mild cognitive impairment diagnosis by a median of 12 years (3–48 years). The mild cognitive impairment subtypes represented include: two with single domain non-amnestic mild cognitive impairment, three with multi-domain non-amnestic mild cognitive impairment, and three with multi-domain amnestic mild cognitive impairment. The cognitive domains most frequently affected were attention and executive functioning, and visuospatial functioning. Hippocampal volumes and the rate of hippocampal atrophy were, on average, within the normal range in the three cases who underwent magnetic resonance imaging, and the choline/creatine ratio was elevated in the two cases who underwent proton magnetic resonance spectroscopy when they were diagnosed as mild cognitive impairment. On autopsy, six had neocortical-predominant Lewy body disease and two had limbic-predominant Lewy body disease; only one had coexisting high-likelihood Alzheimer's disease. These findings indicate that among Lewy body disease cases that pass through a mild cognitive impairment stage, any cognitive pattern or mild cognitive subtype is possible, with the attention/executive and visuospatial domains most frequently impaired. Hippocampal volume and proton magnetic resonance spectroscopy data were consistent with recent data in dementia with Lewy bodies. All cases with rapid eye movement sleep behaviour disorder and mild cognitive impairment were eventually shown to have autopsy-proven Lewy body disease, indicating that rapid eye movement sleep behaviour disorder plus mild cognitive impairment probably reflects brainstem and cerebral Lewy body disease.
PMCID: PMC2822633  PMID: 19889717
mild cognitive impairment; dementia; dementia with Lewy bodies; Lewy body disease; neuropathology

Results 1-3 (3)