PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The zebrafish reference genome sequence and its relationship to the human genome 
Howe, Kerstin | Clark, Matthew D. | Torroja, Carlos F. | Torrance, James | Berthelot, Camille | Muffato, Matthieu | Collins, John E. | Humphray, Sean | McLaren, Karen | Matthews, Lucy | McLaren, Stuart | Sealy, Ian | Caccamo, Mario | Churcher, Carol | Scott, Carol | Barrett, Jeffrey C. | Koch, Romke | Rauch, Gerd-Jörg | White, Simon | Chow, William | Kilian, Britt | Quintais, Leonor T. | Guerra-Assunção, José A. | Zhou, Yi | Gu, Yong | Yen, Jennifer | Vogel, Jan-Hinnerk | Eyre, Tina | Redmond, Seth | Banerjee, Ruby | Chi, Jianxiang | Fu, Beiyuan | Langley, Elizabeth | Maguire, Sean F. | Laird, Gavin K. | Lloyd, David | Kenyon, Emma | Donaldson, Sarah | Sehra, Harminder | Almeida-King, Jeff | Loveland, Jane | Trevanion, Stephen | Jones, Matt | Quail, Mike | Willey, Dave | Hunt, Adrienne | Burton, John | Sims, Sarah | McLay, Kirsten | Plumb, Bob | Davis, Joy | Clee, Chris | Oliver, Karen | Clark, Richard | Riddle, Clare | Eliott, David | Threadgold, Glen | Harden, Glenn | Ware, Darren | Mortimer, Beverly | Kerry, Giselle | Heath, Paul | Phillimore, Benjamin | Tracey, Alan | Corby, Nicole | Dunn, Matthew | Johnson, Christopher | Wood, Jonathan | Clark, Susan | Pelan, Sarah | Griffiths, Guy | Smith, Michelle | Glithero, Rebecca | Howden, Philip | Barker, Nicholas | Stevens, Christopher | Harley, Joanna | Holt, Karen | Panagiotidis, Georgios | Lovell, Jamieson | Beasley, Helen | Henderson, Carl | Gordon, Daria | Auger, Katherine | Wright, Deborah | Collins, Joanna | Raisen, Claire | Dyer, Lauren | Leung, Kenric | Robertson, Lauren | Ambridge, Kirsty | Leongamornlert, Daniel | McGuire, Sarah | Gilderthorp, Ruth | Griffiths, Coline | Manthravadi, Deepa | Nichol, Sarah | Barker, Gary | Whitehead, Siobhan | Kay, Michael | Brown, Jacqueline | Murnane, Clare | Gray, Emma | Humphries, Matthew | Sycamore, Neil | Barker, Darren | Saunders, David | Wallis, Justene | Babbage, Anne | Hammond, Sian | Mashreghi-Mohammadi, Maryam | Barr, Lucy | Martin, Sancha | Wray, Paul | Ellington, Andrew | Matthews, Nicholas | Ellwood, Matthew | Woodmansey, Rebecca | Clark, Graham | Cooper, James | Tromans, Anthony | Grafham, Darren | Skuce, Carl | Pandian, Richard | Andrews, Robert | Harrison, Elliot | Kimberley, Andrew | Garnett, Jane | Fosker, Nigel | Hall, Rebekah | Garner, Patrick | Kelly, Daniel | Bird, Christine | Palmer, Sophie | Gehring, Ines | Berger, Andrea | Dooley, Christopher M. | Ersan-Ürün, Zübeyde | Eser, Cigdem | Geiger, Horst | Geisler, Maria | Karotki, Lena | Kirn, Anette | Konantz, Judith | Konantz, Martina | Oberländer, Martina | Rudolph-Geiger, Silke | Teucke, Mathias | Osoegawa, Kazutoyo | Zhu, Baoli | Rapp, Amanda | Widaa, Sara | Langford, Cordelia | Yang, Fengtang | Carter, Nigel P. | Harrow, Jennifer | Ning, Zemin | Herrero, Javier | Searle, Steve M. J. | Enright, Anton | Geisler, Robert | Plasterk, Ronald H. A. | Lee, Charles | Westerfield, Monte | de Jong, Pieter J. | Zon, Leonard I. | Postlethwait, John H. | Nüsslein-Volhard, Christiane | Hubbard, Tim J. P. | Crollius, Hugues Roest | Rogers, Jane | Stemple, Derek L.
Nature  2013;496(7446):498-503.
Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
doi:10.1038/nature12111
PMCID: PMC3703927  PMID: 23594743
2.  Best practices in bioinformatics training for life scientists 
Briefings in Bioinformatics  2013;14(5):528-537.
The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.
doi:10.1093/bib/bbt043
PMCID: PMC3771230  PMID: 23803301
bioinformatics; training; bioinformatics courses; training life scientists; train the trainers
3.  iAnn: an event sharing platform for the life sciences 
Bioinformatics  2013;29(15):1919-1921.
Summary: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available.
Availability: http://iann.pro/iannviewer
Contact: manuel.corpas@tgac.ac.uk
doi:10.1093/bioinformatics/btt306
PMCID: PMC3712218  PMID: 23742982
4.  Bioinformatics Training Network (BTN): a community resource for bioinformatics trainers 
Briefings in Bioinformatics  2011;13(3):383-389.
Funding bodies are increasingly recognizing the need to provide graduates and researchers with access to short intensive courses in a variety of disciplines, in order both to improve the general skills base and to provide solid foundations on which researchers may build their careers. In response to the development of ‘high-throughput biology’, the need for training in the field of bioinformatics, in particular, is seeing a resurgence: it has been defined as a key priority by many Institutions and research programmes and is now an important component of many grant proposals. Nevertheless, when it comes to planning and preparing to meet such training needs, tension arises between the reward structures that predominate in the scientific community which compel individuals to publish or perish, and the time that must be devoted to the design, delivery and maintenance of high-quality training materials. Conversely, there is much relevant teaching material and training expertise available worldwide that, were it properly organized, could be exploited by anyone who needs to provide training or needs to set up a new course. To do this, however, the materials would have to be centralized in a database and clearly tagged in relation to target audiences, learning objectives, etc. Ideally, they would also be peer reviewed, and easily and efficiently accessible for downloading. Here, we present the Bioinformatics Training Network (BTN), a new enterprise that has been initiated to address these needs and review it, respectively, to similar initiatives and collections.
doi:10.1093/bib/bbr064
PMCID: PMC3357490  PMID: 22110242
Bioinformatics; training; end users; bioinformatics courses; learning bioinformatics
5.  DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage 
Zody, Michael C. | Garber, Manuel | Adams, David J. | Sharpe, Ted | Harrow, Jennifer | Lupski, James R. | Nicholson, Christine | Searle, Steven M. | Wilming, Laurens | Young, Sarah K. | Abouelleil, Amr | Allen, Nicole R. | Bi, Weimin | Bloom, Toby | Borowsky, Mark L. | Bugalter, Boris E. | Butler, Jonathan | Chang, Jean L. | Chen, Chao-Kung | Cook, April | Corum, Benjamin | Cuomo, Christina A. | de Jong, Pieter J. | DeCaprio, David | Dewar, Ken | FitzGerald, Michael | Gilbert, James | Gibson, Richard | Gnerre, Sante | Goldstein, Steven | Grafham, Darren V. | Grocock, Russell | Hafez, Nabil | Hagopian, Daniel S. | Hart, Elizabeth | Norman, Catherine Hosage | Humphray, Sean | Jaffe, David B. | Jones, Matt | Kamal, Michael | Khodiyar, Varsha K. | LaButti, Kurt | Laird, Gavin | Lehoczky, Jessica | Liu, Xiaohong | Lokyitsang, Tashi | Loveland, Jane | Lui, Annie | Macdonald, Pendexter | Major, John E. | Matthews, Lucy | Mauceli, Evan | McCarroll, Steven A. | Mihalev, Atanas H. | Mudge, Jonathan | Nguyen, Cindy | Nicol, Robert | O'Leary, Sinéad B. | Osoegawa, Kazutoyo | Schwartz, David C. | Shaw-Smith, Charles | Stankiewicz, Pawel | Steward, Charles | Swarbreck, David | Venkataraman, Vijay | Whittaker, Charles A. | Yang, Xiaoping | Zimmer, Andrew R. | Bradley, Allan | Hubbard, Tim | Birren, Bruce W. | Rogers, Jane | Lander, Eric S. | Nusbaum, Chad
Nature  2006;440(7087):1045-1049.
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome1, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome2,3. It is also enriched in segmental duplications, ranking third in density among the autosomes4. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution5,6, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
doi:10.1038/nature04689
PMCID: PMC2610434  PMID: 16625196

Results 1-5 (5)