PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate 
Science (New York, N.Y.)  2010;330(6009):1381-1385.
Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.
doi:10.1126/science.1194167
PMCID: PMC3760481  PMID: 21097902
2.  Genomicus: five genome browsers for comparative genomics in eukaryota 
Nucleic Acids Research  2012;41(D1):D700-D705.
Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.
doi:10.1093/nar/gks1156
PMCID: PMC3531091  PMID: 23193262
3.  How much does the amphioxus genome represent the ancestor of chordates? 
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
doi:10.1093/bfgp/els003
PMCID: PMC3310212  PMID: 22373648
deuterostomes; evolutionary rates; gene duplication; gene loss; orthology; synteny
4.  Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes 
Bioinformatics  2010;26(8):1119-1121.
Summary: Comparative genomics remains a pivotal strategy to study the evolution of gene organization, and this primacy is reinforced by the growing number of full genome sequences available in public repositories. Despite this growth, bioinformatic tools available to visualize and compare genomes and to infer evolutionary events remain restricted to two or three genomes at a time, thus limiting the breadth and the nature of the question that can be investigated. Here we present Genomicus, a new synteny browser that can represent and compare unlimited numbers of genomes in a broad phylogenetic view. In addition, Genomicus includes reconstructed ancestral gene organization, thus greatly facilitating the interpretation of the data.
Availability: Genomicus is freely available for online use at http://www.dyogen.ens.fr/genomicus while data can be downloaded at ftp://ftp.biologie.ens.fr/pub/dyogen/genomicus
Contact: hrc@biologie.ens.fr
doi:10.1093/bioinformatics/btq079
PMCID: PMC2853686  PMID: 20185404
5.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates 
Nature Communications  2014;5:3657.
Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.
Although whole-genome duplications (WGDs) are rare events, they have an important role in shaping vertebrate evolution. Here, the authors sequence the rainbow trout genome and show that rediploidization after WGD occurs in a slow and stepwise manner.
doi:10.1038/ncomms4657
PMCID: PMC4071752  PMID: 24755649

Results 1-5 (5)