PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway 
Cancer research  2013;73(24):7301-7312.
Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells (HBECs). Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis.
doi:10.1158/0008-5472.CAN-13-1897
PMCID: PMC3959870  PMID: 24170126
YEATS4; NSCLC; oncogene; p53; integrative analysis
2.  Integrative Genomics Identified RFC3 as an Amplified Candidate Oncogene in Esophageal Adenocarcinoma 
Purpose
Esophageal adenocarcinoma (EAC) is a lethal malignancy that can develop from the premalignant condition, Barrett’s esophagus (BE). Currently, there are no validated simple methods to predict which patients will progress to EAC. A better understanding of the genetic mechanisms driving EAC tumorigenesis is needed to identify new therapeutic targets and develop biomarkers capable of identifying high-risk patients that would benefit from aggressive neoadjuvant therapy. We employed an integrative genomics approach to identify novel genes involved in EAC biology that may serve as useful clinical markers.
Experimental Design
Whole genome tiling-path array CGH was used to identify significant regions of copy number (CN) alteration in 20 EACs and 10 matching BE tissues. CN and gene expression data were integrated to identify candidate oncogenes within regions of amplification and multiple additional sample cohorts were assessed to validate candidate genes.
Results
We identified RFC3 as a novel, candidate oncogene activated by amplification in ~25% of EAC samples. RFC3 was also amplified in BE from a patient whose EAC harbored amplification, and was differentially expressed between non-malignant and EAC tissues. CN gains were detected in other cancer types and RFC3 knockdown inhibited proliferation and anchorage-independent growth of cancer cells with increased CN, but had little effect on those without. Moreover, high RFC3 expression was associated with poor patient outcome in multiple cancer types.
Conclusions
RFC3 is a candidate oncogene amplified in EAC. RFC3 DNA amplification is also prevalent in other epithelial cancer types and RFC3 expression could serve as a prognostic marker.
doi:10.1158/1078-0432.CCR-11-1431
PMCID: PMC3523177  PMID: 22328562
RFC3; esophageal adenocarcinoma; Barrett’s esophagus; DNA amplification
3.  Genetic Disruption of KEAP1/CUL3 E3 Ubiquitin Ligase Complex Components is a Key Mechanism of NF-kappaB Pathway Activation in Lung Cancer 
Introduction
IKBKB (IKK-β/IKK-2), which activates NF-κB, is a substrate of the KEAP1-CUL3-RBX1 E3-ubiquitin ligase complex, implicating this complex in regulation of NF-κB signaling. We investigated complex component gene disruption as a novel genetic mechanism of NF-κB activation in non-small cell lung cancer (NSCLC).
Methods
644 tumor- and 90 cell line-genomes were analyzed for gene-dosage status of the individual complex components and IKBKB. Gene expression of these genes, and NF-κB target genes were analyzed in 48 tumors. IKBKB protein levels were assessed in tumors with and without complex or IKBKB genetic disruption. Complex component knockdown was performed to assess effects of the E3-ligase complex on IKBKB and NF-κB levels, and phenotypic importance of IKBKB expression was measured by pharmacological inhibition.
Results
We observed strikingly frequent genetic disruption (42%) and aberrant expression (63%) of the E3-ligase complex and IKBKB in the samples examined. While both adenocarcinomas and squamous cell carcinomas showed complex disruption, the patterns of gene disruption differed. IKBKB levels were elevated with complex disruption, knockdown of complex components increased activated forms of IKBKB and NF-κB proteins, and IKBKB inhibition detriments cell viability, highlighting the biological significance of complex disruption. NF-κB target genes were overexpressed in samples with complex disruption, further demonstrating the effect of complex disruption on NF-κB activity.
Conclusions
Gene dosage alteration is a prominent mechanism that disrupts each component of the KEAP1-CUL3-RBX1 complex and its NF-κB stimulating substrate, IKBKB. Here we show that, multiple component disruption of this complex represents a novel mechanism of NF-κB activation in NSCLC.
doi:10.1097/JTO.0b013e3182289479
PMCID: PMC3164321  PMID: 21795997
KEAP1; CUL3; RBX1; IKBKB; NF-κB signaling; genetic disruption
4.  Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development 
PLoS ONE  2012;7(5):e37775.
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
doi:10.1371/journal.pone.0037775
PMCID: PMC3357406  PMID: 22629454

Results 1-4 (4)