PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk 
Oncogene  2013;33(36):4464-4473.
In an effort to identify novel biallelically inactivated tumor suppressor genes (TSG) in sporadic invasive and pre-invasive non-small cell lung cancer (NSCLC) genomes, we applied a comprehensive integrated multi-‘omics approach to investigate patient matched, paired NSCLC tumor and non-malignant parenchymal tissues. By surveying lung tumor genomes for genes concomitantly inactivated within individual tumors by multiple mechanisms, and by the frequency of disruption in tumors across multiple cohorts, we have identified a putative lung cancer TSG, Eyes Absent 4 (EYA4). EYA4 is frequently and concomitantly deleted, hypermethylated and underexpressed in multiple independent lung tumor data sets, in both major NSCLC subtypes, and in the earliest stages of lung cancer. We find not only that decreased EYA4 expression is associated with poor survival in sporadic lung cancers, but EYA4 SNPs are associated with increased familial cancer risk, consistent with EYA4’s proximity to the previously reported lung cancer susceptibility locus on 6q. Functionally, we find that EYA4 displays TSG-like properties with a role in modulating apoptosis and DNA repair. Cross examination of EYA4 expression across multiple tumor types suggests a cell type-specific tumorigenic role for EYA4, consistent with a tumor suppressor function in cancers of epithelial origin. This work shows a clear role for EYA4 as a putative TSG in NSCLC.
doi:10.1038/onc.2013.396
PMCID: PMC4527534  PMID: 24096489
EYA4; two-hit; hypermethylation; tumor suppressor; TSG; non-small cell lung cancer
2.  Loss of the Notch effector RBPJ promotes tumorigenesis 
Kulic et al. show that RBPJ, a transcriptional repressor of Notch, is frequently deleted in human cancers and can function as a tumor suppressor. Loss of RBPJ acts to derepress target gene promoters, allowing Notch-independent activation by alternate transcription factors that promote tumor growth.
Aberrant Notch activity is oncogenic in several malignancies, but it is unclear how expression or function of downstream elements in the Notch pathway affects tumor growth. Transcriptional regulation by Notch is dependent on interaction with the DNA-binding transcriptional repressor, RBPJ, and consequent derepression or activation of associated gene promoters. We show here that RBPJ is frequently depleted in human tumors. Depletion of RBPJ in human cancer cell lines xenografted into immunodeficient mice resulted in activation of canonical Notch target genes, and accelerated tumor growth secondary to reduced cell death. Global analysis of activated regions of the genome, as defined by differential acetylation of histone H4 (H4ac), revealed that the cell death pathway was significantly dysregulated in RBPJ-depleted tumors. Analysis of transcription factor binding data identified several transcriptional activators that bind promoters with differential H4ac in RBPJ-depleted cells. Functional studies demonstrated that NF-κB and MYC were essential for survival of RBPJ-depleted cells. Thus, loss of RBPJ derepresses target gene promoters, allowing Notch-independent activation by alternate transcription factors that promote tumorigenesis.
doi:10.1084/jem.20121192
PMCID: PMC4291530  PMID: 25512468
3.  TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer  
The Journal of Clinical Investigation  2011;121(10):4095-4105.
Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer–associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non–small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor–associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers.
doi:10.1172/JCI58818
PMCID: PMC3195480  PMID: 21911935

Results 1-3 (3)