Search tips
Search criteria

Results 1-25 (216)

Clipboard (0)
Year of Publication
more »
Document Types
1.  Targeting Activation Induced Cytidine Deaminase Overcome Tumor Evasion of Immunotherapy by Cytotoxic T Lymphocytes 
Activation induced cytidine deaminase (AID) is an enzyme essential for the generation of antibody diversity in B cells and is considered to be a general gene mutator. In addition, AID expression was also implicated in the pathogenesis of human B cell malignancies and associated with poor prognosis. Here we report that siRNA silencing of AID in plasmacytoma dramatically increased its susceptibility to immunotherapy by cytotoxic T lymphocytes. AID silencing did not decrease the mutation frequencies of tumor antigen gene P1A. Gene-array analysis showed dramatically altered expression of a number of genes in AID-silenced plasmacytoma cells and upregulation of CD200 was shown to be in favor of tumor eradication by CTL. Taken together, we demonstrate a novel function of AID in tumor evasion of CTL therapy and that targeting AID should be beneficial in the immunotherapy of AID positive tumors.
PMCID: PMC2874093  PMID: 20404277
Activation induced cytidine deaminase; Plasmacytoma; Cytotoxic T Lymphocytes; Immune evasion
2.  Thymus Exosomes-Like Particles Induce Regulatory T Cells1 
Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3+ regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4+CD25− T cells into Tregs. Tregs induced by thymic ELPs suppress the proliferation of CD4+CD25− T cells in vitro and in vivo. We further show that neutralization of TGF-β in ELPs partially reverses thymic ELP-mediated induction of CD4+Foxp3+ T cells in the lung and liver. This study demonstrates that thymic ELPs participate in the induction of Foxp3+ Tregs. Also, TGF-β of thymic ELPs might be required for the generation of Tregs in the peripheral tissues.
PMCID: PMC4319673  PMID: 18832678
3.  Lyn mitigates mouse airway remodeling by down-regulating the TGF-β3 isoform in house dust mite models 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(11):10.4049/jimmunol.1301596.
Chronic airway remodeling is a serious consequence of asthma, which is caused by complex but largely unknown mechanisms. Despite versatile functions, the role of Lyn in chronic airway remodeling remains undefined. Using Lyn−/− mice, we show that continual exposure (for 8 weeks) of house dust mite (HDM) extracts induced a severe phenotype of chronic airway remodeling including exacerbated mucus production, collagen deposition, dysregulated cytokine secretion, and elevated inflammation. Strikingly, a significant increase in TGF-β3 rather than TGF-β1 was observed in Lyn−/− mouse lungs compared to wild-type mice. Furthermore, TGF-β3 neutralizing antibodies not only inhibited the expression of STAT6 and Smad2/3, but also decreased phosphorylation of Smad2 and NFκB in Lyn−/− mouse lungs. In addition, both recombinant and adenoviral TGF-β3 significantly promoted epithelial to mesenchymal transition (EMT) and intensified collagen I production and MUC5AC expression. Further examining chronic asthma patients showed that a decreased Lyn correlated with the severity of airway inflammation and mucus hypersecretion. Finally, Lyn may critically regulate airway remodeling by directly interacting with TGF-β3. Collectively, these findings revealed that Lyn regulates TGF-β3 isoform and modulates the development of airway remodeling, which may have therapeutic indications for severe chronic asthma.
PMCID: PMC3863691  PMID: 24127553
knockout mice; Th2 cytokines; HDM extracts; oxidative stress; airway remodeling; EMT
4.  Increased susceptibility to pulmonary Pseudomonas infection in Splunc1 knockout mice 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(8):10.4049/jimmunol.1202340.
The airway epithelium is the first line of host defense against pathogens. The short PLUNC 1 (SPLUNC1) protein is secreted in respiratory tracts and a member of the BPI fold-containing (BPIF) protein family, which shares structural similarities with bactericidal/permeability-increasing (BPI)-like proteins. On the basis of its homology with BPIs and restricted expression of SPLUNC1 in serous cells of submucosal glands and surface epithelial cells of the upper respiratory tract, SPLUNC1 is thought to possess antimicrobial activity in host defense. SPLUNC1 is also reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to determine the in vivo functions of SPLUNC1 following Pseudomonas aeruginosa infection and to elucidate the underlying mechanism, using a knockout (KO) mouse model with a genetic ablation of Splunc1. Splunc1 KO mice showed accelerated mortality and increased susceptibility to P. aeruginosa infection with significantly decreased survival rates, increased bacterial burdens, exaggerated tissue injuries, and elevated proinflammatory cytokine levels as compared to those of their wild-type (WT) littermates. Increased neutrophil infiltration in Splunc1 KO mice was accompanied by elevated chemokine levels including Cxcl1, Cxcl2, and Ccl20. Furthermore, the expression of several epithelial secretory proteins and antimicrobial molecules was considerably suppressed in the lungs of Splunc1 KO mice. The deficiencya of Splunc1 in mouse airway epithelium also results in increased biofilm formation of P. aeruginosa. Taken together, our results support that the ablation of Splunc1 in mouse airways affects the mucociliary clearance, resulting in decreased innate immune response during Pseudomonas-induced respiratory infection.
PMCID: PMC3839417  PMID: 24048904
splunc1; epithelium; mucociliary clearance; Pseudomonas infection
5.  FIZZ2/RELM-β Induction and Role in Pulmonary Fibrosis 
Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-β, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and α-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c+ dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.
PMCID: PMC4030639  PMID: 21602491
6.  Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis 
IL-35 is a member of the IL-12 family of cytokines consisting of IL-12 p35 subunit and IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune suppressive activity. Although IL-35 has been demonstrated to be produced by regulatory T cells, gene expression analysis has revealed that IL-35 is likely to have wider distribution including expression in cancer cells. In this study we have demonstrated that IL-35 is produced in human cancer tissues such as large B cell lymphoma, nasopharyngeal carcinoma and melanoma. In order to determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35 producing plasmacytoma J558 and B16 melanoma cells, and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but stimulates tumorigenesis in both immune competent and Rag1/2 deficient mice. Tumor-derived IL-35 increases CD11b+Gr1+ myeloid cell accumulation in tumor microenvironment, and thereby promotes tumor angiogenesis. In immune competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor antigen specific CD8+ T cell activation, differentiation and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions of IL-35 in promoting tumor growth via enhancing myeloid cell accumulation, tumor angiogenesis and suppression of tumor immunity.
PMCID: PMC3578001  PMID: 23345334
7.  Olfactomedin 4 inhibits cathepsin C-mediated protease activities, thereby modulating neutrophil killing of S. aureus and E. coli in mice1 
Neutrophils kill bacteria generally through oxidative and nonoxidative mechanisms. Whereas much research has focused on the enzymes essential for neutrophil killing, little is known about the regulatory molecules responsible for such killing. In this study we investigated the role of olfactomedin 4 (OLFM4), an olfactomedin-related glycoprotein, in neutrophil bactericidal capability and host innate immunity. Neutrophils from OLFM4−/− mice have increased intracellular killing of Staphylococcus aureus and Escherichia coli in vitro. The OLFM4−/− mice have enhanced in vivo bacterial clearance and are more resistant to sepsis when challenged with S. aureus or E. coli by intraperitoneal injection. OLFM4 was found to interact with cathepsin C, a cysteine protease that plays an important role in bacterial killing and immune regulation. We demonstrated that OLFM4 inhibited cathepsin C activity in vitro and in vivo. The cathepsin C activity in neutrophils from OLFM4−/− mice was significantly higher than that in neutrophils from wild-type littermate mice. The activities of three serine proteases (neutrophil elastase, cathepsin G, and proteinase 3), which require cathepsin C activity for processing and maturity, were also significantly higher in OLFM4−/− neutrophils. The bacterial killing and clearance capabilities observed in OLFM4−/− mice that was enhanced relative to WT mice was significantly compromised by the additional loss of cathepsin C in mice with OLFM4 and cathepsin C double deficiency. These results indicate that OLFM4 is an important negative regulator of neutrophil bactericidal activity by restricting cathepsin C activity and its downstream granule-associated serine proteases.
PMCID: PMC3424379  PMID: 22844115
8.  B Cells Have Distinct Roles in Host Protection against Different Nematode Parasites 
B cells can mediate protective responses against nematode parasites by supporting Th2 cell development and/or by producing Abs. To examine this, B cell-deficient mice were inoculated with Nippostrongylus brasiliensis or Heligmosomoides polygyrus. B cell-deficient and wild type mice showed similar elevations in Th2 cytokines and worm expulsion after N. brasiliensis inoculation. Worm expulsion was inhibited in H. polygyrus-inoculated B cell-deficient mice, although Th2 cytokine elevations in mucosal tissues were unaffected. Impaired larval migration and development was compromised as early as day 4 after H. polygyrus challenge, and administration of immune serum restored protective immunity in B cell-deficient mice, indicating a primary role for Ab. Immune serum even mediated protective effects when administered to naive mice prior to inoculation. This study suggests variability in the importance of B cells in mediating protection against intestinal nematode parasites, and it indicates an important role for Ab in resistance to tissue-dwelling parasites.
PMCID: PMC3729113  PMID: 20357259
9.  Distinct regulation of murine lupus susceptibility genes by the IRF5-Blimp-1 axis 
Genome-wide association studies have identified lupus susceptibility genes such as IRF5 and PRDM1 (encoding for the IRF5 and Blimp-1) in the human genome. Accordingly, the murine Irf5 and Prdm1 genes have been shown to play a role in lupus susceptibility. However, it remains unclear how IRF5 and Blimp-1 (a transcriptional target of IRF5) contribute to lupus susceptibility. Given that the murine lupus susceptibility locus Nba2 includes the interferon-regulated genes Ifi202 (encoding for the p202 protein), Aim2 (encoding for the Aim2 protein), and Fcgr2b (encoding for the FcγRIIB receptor), we investigated whether the IRF5-Blimp-1 axis could regulate the expression of these genes. We found that an Irf5-deficiency in mice decreased the expression of Blimp-1 and reduced the expression of the Ifi202. However, the deficiency increased the expression of Aim2 and Fcgr2b. Correspondingly, increased expression of IRF5 in cells increased levels of Blimp-1 and p202 protein. Moreover, Blimp-1 expression increased the expression of Ifi202, whereas it reduced the expression of Aim2. Interestingly, an Aim2-deficiency in female mice increased the expression of IRF5. Similarly, the Fcgr2b-deficient mice expressed increased levels of IRF5. Moreover, increased expression of IRF5 and Blimp-1 in lupus-prone B6.Nba2, NZB, and B6.Sle123 female mice (as compared to age-matched C57BL/6 female mice) was associated with increased levels of the p202 protein. Together, our observations demonstrate that the IRF5-Blimp-1 axis differentially regulates the expression of Nba2 lupus susceptibility genes, and suggest an important role for the IRF5-Blimp-1-p202 axis in murine lupus susceptibility.
PMCID: PMC3244553  PMID: 22116829
IRF5; Blimp-1; Nba2 locus; p202; interferon; autoimmunity; SLE
10.  Microbiotadown regulates dendritic cell expression of miR-10a which targets IL-12/IL-23p40 
Commensal flora plays important roles in the regulation of the gene expression involved in many intestinal functions and the maintenance of immune homeostasis, as well as in the pathogenesis of inflammatory bowel diseases (IBD). The microRNAs (miRNAs), a class of small, non-coding RNAs, act as key regulators in many biological processes. The miRNAs are highly conserved among species and appear to play important roles in both innate and adaptive immunity, as they can control the differentiation of various immune cells as well as their functions. However, it is still largely unknown how microbiota regulates miRNA expression, thereby contributing to intestinal homeostasis and pathogenesis of IBD. In our current study, we found that microbiota negatively regulated intestinal miR-10a expression, in that the intestines, as well as intestinal epithelial cells and dendritic cells of specific pathogen-free (SPF) mice, expressed much lower levels of miR-10a compared to those in germ-free (GF) mice. Commensal bacteria downregulated DC miR-10a expression via TLR-TLR ligand interactions through a MyD88-dependent pathway. We identified IL-12/IL-23p40, a key molecule for innate immune responses to commensal bacteria, as a target of miR-10a. The ectopic expression of miR-10a precursor inhibited, whereas miR-10a inhibitor promoted, the expression of IL-12/IL-23p40 in DC. Mice with colitis expressing higher levels of IL-12/IL-23p40 exhibit lower levels of intestinal miR-10a compared to that in the control mice. Collectively, our data demonstrated that microbiota negatively regulates host miR-10a expression, which may contribute to the maintenance of intestinal homeostasis by targeting IL-12/IL-23p40 expression.
PMCID: PMC3226774  PMID: 22068236
11.  The Tuberous Sclerosis Complex -mTOR Pathway Maintains the Quiescence and Survival of Naïve T Cells 
Naïve T cells receive stimulation from the positive selecting ligand in the periphery for their survival. This stimulation does not normally lead to overt activation of T cells, as the T cells remain largely quiescent until they receive either antigenic or lymphopenic stimuli. The underlying mechanism responsible for survival and quiescence of the naïve T cells remain largely unknown. Here we report that T cell-specific deletion of Tsc1, a negative regulator of mTOR, resulted in both spontaneous losses of quiescence and cellularity, especially within the CD8 subset. The Tsc1-deficient T cells have increased cell proliferation and apoptosis. Tsc1 deletion affects the survival and quiescence of T cells in the absence of antigenic stimulation. Loss of quiescence but not cellularity was inhibited by rapamycin. Our data demonstrate that TSC-mTOR maintains quiescence and survival of T cells.
PMCID: PMC3151493  PMID: 21709159
12.  Discrete TCR repertoires and CDR3 features distinguish effector and Foxp3+ regulatory T lymphocytes in MOG-EAE 
Regulatory T lymphocytes (Treg) expressing the Forkhead Box Transcription Factor 3 (Foxp3) are critical modulators of autoimmunity. Foxp3+ Treg may develop in the thymus as a population distinct from conventional Foxp3− αβ T cells (Tconv). Alternatively, plasticity in Foxp3 expression may allow for the interconversion of mature Treg and Tconv. We examined >160,000 TCR sequences from Foxp3+ or Foxp3− populations in the spleens or CNS of wild type mice with experimental allergic encephalomyelitis (EAE) to determine their relatedness and identify distinguishing TCR features. Our results indicate that the CNS infiltrating Treg and Tconv arise predominantly from distinct sources. The repertoires of CNS Treg or Tconv TCR showed limited overlap with heterologous populations in either the CNS or spleen, indicating that they are largely unrelated. Indeed, Treg and Tconv TCR in the CNS were significantly less related than those populations in the spleen. In contrast, CNS Treg and Tconv repertoires strongly intersected those of the homologous cell type in the spleen. High frequency sequences more likely to be disease associated showed similar results, and some public TCR demonstrated Treg or Tconv-specific motifs. Different charge characteristics and amino acid use preferences were identified in the CDR3β of Treg and Tconv infiltrating the CNS, further indicating that their repertoires are qualitatively distinct. Therefore discrete populations of Treg and Tconv that do not substantially interconvert respond during EAE. Differences in sequence and physical characteristics distinguish Treg and Tconv TCR and imply dissimilar antigen recognition properties.
PMCID: PMC2944006  PMID: 20810983
13.  Neutrophils Clear Bacteria Associated with Parasitic Nematodes Augmenting the Development of an Effective Th2-Type Response1 
Infection with the parasitic nematode Nippostrongylus brasiliensis induces a potent Th2 response; however, little is known about early stages of the innate response that may contribute to protective immunity. To examine early events in this response, chemokine expression in the draining lymph node was examined after N. brasiliensis inoculation. Pronounced increases of several chemokines, including CCL2, were observed. Compared with wild-type mice, elevations in a Gr-1bright population in the draining lymph node was significantly decreased in CCL2−/− mice after N. brasiliensis inoculation. Further flow cytometric and immunofluorescent analysis showed that in wild-type mice, Gr-1+ cells transiently entered and exited the draining lymph node shortly after N. brasiliensis inoculation. The Gr-1bright population was comprised of neutrophils expressing TGF-β and TNF-α. Following Gr-1+ cell depletion, N. brasiliensis infection resulted in transient, but significantly increased levels of IFN-γ, increased serum IgG2a, reduced Th2 cytokines and serum IgE, greatly increased mortality, and delayed worm expulsion. Furthermore, bacteria were readily detected in vital organs. Infection of Gr-1+ cell-depleted mice with N. brasiliensis larvae that were pretreated with antibiotics prevented bacterial dissemination, Th1 inflammatory responses, and decreases in host survival. This study indicates that parasitic nematodes can be an important vector of potentially harmful bacteria, which is typically controlled by CCL2-dependent neutrophils that ensure the optimal development of Th2 immune responses and parasite resistance.
PMCID: PMC2288648  PMID: 18097048
14.  The Role of B Cells in the Development of CD4 Effector T Cells during a Polarized Th2 Immune Response1 
Previous studies have suggested that B cells promote Th2 cell development by inhibiting Th1 cell differentiation. To examine whether B cells are directly required for the development of IL-4-producing T cells in the lymph node during a highly polarized Th2 response, B cell-deficient and wild-type mice were inoculated with the nematode parasite, Nippostrongylus brasiliensis. On day 7, in the absence of increased IFN-γ, IL-4 protein and gene expression from CD4 T cells in the draining lymph nodes were markedly reduced in B cell-deficient mice and could not be restored by multiple immunizations. Using a DO11.10 T cell adoptive transfer system, OVA-specific T cell IL-4 production and cell cycle progression, but not cell surface expression of early activation markers, were impaired in B cell-deficient recipient mice following immunization with N. brasiliensis plus OVA. Laser capture microdissection and immunofluorescent staining showed that pronounced IL-4 mRNA and protein secretion by donor DO11.10 T cells first occurred in the T cell:B cell zone of the lymph node shortly after inoculation of IL-4−/− recipients, suggesting that this microenvironment is critical for initial Th2 cell development. Reconstitution of B cell-deficient mice with wild-type naive B cells, or IL-4−/− B cells, substantially restored Ag-specific T cell IL-4 production. However, reconstitution with B7-1/B7-2-deficient B cells failed to rescue the IL-4-producing DO11.10 T cells. These results suggest that B cells, expressing B7 costimulatory molecules, are required in the absence of an underlying IFN-γ-mediated response for the development of a polarized primary Ag-specific Th2 response in vivo.
PMCID: PMC2258088  PMID: 17785819
15.  IL-2 and Autocrine IL-4 Drive the In Vivo Development of Antigen-Specific Th2 T Cells Elicited by Nematode Parasites12 
The intestinal nematode parasite, Nippostrongylus brasiliensis, triggers potent type 2 immunity. Using OVA peptide as a model Ag, we have examined the adjuvant effects of this parasite on the in vivo development of Ag-specific Th2 cells from naive DO11.10 T cells. Our findings show that Th2 cells can develop from transferred naive OVA-specific DO11.10 T cells in recipient IL-4–/– mice inoculated with N. brasiliensis plus OVA. However, autocrine IL-4 is required for in situ Th2 cell differentiation since transferred IL-4Rα-deficient DO11.10 T cells showed greatly reduced Th2 cell development in inoculated IL-4–/– recipient mice. Surprisingly, we also found that IL-2 blockade promoted B7-dependent T cell cycling, but inhibited the development of OVA-specific Th2 cells. Furthermore, the effects of IL-2 occurred independently of CD25+ T regulatory cells. These studies establish a previously unrecognized requirement for autocrine IL-4 and IL-2 in Th2 responses elicited by nematode parasites.
PMCID: PMC1978543  PMID: 15699158
16.  Functional Redundancy of MyD88-dependent Signaling Pathways in a Murine Model of Histidyl-tRNA Synthetase-induced Myositis 
We have previously shown that intramuscular administration of bacterially expressed murine histidyl-tRNA synthetase (HRS) triggers florid muscle inflammation (relative to appropriate control proteins) in various congenic strains of mice. Because severe disease develops even in the absence of adaptive immune responses to HRS, we sought to identify innate immune signaling components contributing to our model of HRS-induced myositis. In vitro stimulation assays demonstrated HRS-mediated activation of HEK293 cells transfected with either TLR2 or TLR4, revealing an excitatory capacity exceeding that of other bacterially expressed fusion proteins. Corresponding to this apparent functional redundancy of TLR signaling pathways, HRS immunization of B6.TLR2−/− and B6.TLR4−/− single knockout mice yielded significant lymphocytic infiltration of muscle tissue comparable to that produced in C57BL/6 WT mice. In contrast, concomitant elimination of TLR2 and TLR4 signaling in B6.TLR2−/−.TLR4−/− double knockout mice markedly reduced the severity of HRS-induced muscle inflammation. Complementary subfragment analysis demonstrated that amino acids 60–90 of HRS were absolutely required for in vitro as well as in vivo signaling via these MyD88-dependent TLR pathways—effects mediated, in part, through preferential binding of exogenous ligands capable of activating specific TLRs. Collectively, these experiments indicate that multiple MyD88-dependent signaling cascades contribute to this model of HRS-induced myositis, underscoring the antigenic versatility of HRS and confirming the importance of innate immunity in this system.
PMCID: PMC4332536  PMID: 23842751
17.  Phosphatidylinositol 3-Kinase–Independent Signaling Pathways Contribute to ICOS-Mediated T Cell Costimulation in Acute Graft-Versus-Host Disease in Mice 
We and others have previously shown that ICOS plays an important role in inducing acute graft-versus-host disease (GVHD) in murine models of allogeneic bone marrow transplantation. ICOS potentiates TCR-mediated PI3K activation and intracellular calcium mobilization. However, ICOS signal transduction pathways involved in GVHD remain unknown. In this study, we examined the contribution of ICOS-PI3K signaling in the pathogenic potential of T cells using a knock-in mouse strain, ICOS-YF, which selectively lost the ability to activate PI3K. We found that when total T cells were used as alloreactive T cells, ICOS-YF T cells caused less severe GVHD compared with ICOS wild-type T cells, but they induced much more aggressive disease than ICOS knockout T cells. This intermediate level of pathogenic capacity of ICOS-YF T cells was correlated with similar levels of IFN-g–producing CD8 T cells that developed in the recipients of ICOS-WT or ICOS-YF T cells. We further evaluated the role of ICOS-PI3K signaling in CD4 versus CD8 T cell compartment using GVHD models that are exclusively driven by CD4 or CD8 T cells. Remarkably, ICOS-YF CD8 T cells caused disease similar to ICOS wild-type CD8 T cells, whereas ICOS-YF CD4 T cells behaved very similarly to their ICOS knockout counterparts. Consistent with their in vivo pathogenic potential, CD8 T cells responded to ICOS ligation in vitro by PI3K-independent calcium flux, T cell activation, and proliferation. Thus, in acute GVHD in mice, CD4 T cells heavily rely on ICOS-PI3K signaling pathways; in contrast, CD8 T cells can use PI3K-independent ICOS signaling pathways, possibly through calcium.
PMCID: PMC4318500  PMID: 23729441
18.  Arsenic trioxidesand other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes 
Journal of immunology (Baltimore, Md. : 1950)  2013;192(2):10.4049/jimmunol.1301434.
Inflammasomes are large cytoplasmic multi-protein complexes that activate caspase-1 in response to diverse intracellular danger signals. Inflammasome components termed NOD-like receptor proteins (NLRs) act as sensors for pathogen associated molecular patterns, stress or danger stimuli. We discovered that arsenicals, including arsenic trioxide and sodium arsenite, inhibited activation of the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes by their respective activating signals, anthrax lethal toxin, nigericin, and flagellin. These compounds prevented the autoproteolytic activation of caspase-1 and the processing and secretion of IL-1β from macrophages. Inhibition was independent of protein synthesis induction, proteasome-mediated protein breakdown, or kinase signaling pathways. Arsenic trioxide and sodium arsenite did not directly modify or inhibit the activity of pre-activated recombinant caspase-1. Rather, they induced a cellular state inhibitory to both the autoproteolytic and substrate cleavage activities of caspase-1 which was reversed by the reactive oxygen species (ROS) scavenger N-acetyl-cysteine but not by reducing agents or nitric oxide pathway inhibitors. Arsenicals provided protection against NLRP1-dependent anthrax lethal toxin-mediated death and prevented NLRP3-dependent neutrophil recruitment in a monosodium-urate crystal inflammatory murine peritonitis model. These findings suggest a novel role in inhibition of the innate immune response for arsenical compounds which have been used as therapeutics for a few hundred years.
PMCID: PMC3884817  PMID: 24337744
19.  Effects of aging, CMV infection, and EBV infection on human B cell repertoires 
Elderly humans show decreased humoral immunity to pathogens and vaccines, yet the effects of aging on B cells are not fully known. Chronic viral infection by cytomegalovirus (CMV) is implicated as a driver of clonal T cell proliferations in some aging humans, but whether CMV or Epstein-Barr virus (EBV) infection contributes to alterations in the B cell repertoire with age is unclear. We have used high-throughput DNA sequencing of immunoglobulin heavy chain (IGH) gene rearrangements to study the B cell receptor repertoires over two successive years in 27 individuals ranging in age from 20 to 89 years. Some features of the B cell repertoire remain stable with age, but elderly subjects show increased numbers of B cells with long CDR3 regions, a trend toward accumulation of more highly mutated IgM and IgG immunoglobulin genes, and persistent clonal B cell populations in the blood. Seropositivity for CMV or EBV infection alters B cell repertoires, regardless of the individual's age: EBV infection correlates with the presence of persistent clonal B cell expansions, while CMV infection correlates with the proportion of highly mutated antibody genes. These findings isolate effects of aging from those of chronic viral infection on B cell repertoires, and provide a baseline for understanding human B cell responses to vaccination or infectious stimuli.
PMCID: PMC3947124  PMID: 24337376
20.  Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1 
Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.
PMCID: PMC3934829  PMID: 24323580
21.  Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner1 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(12):10.4049/jimmunol.1302273.
Inefficient thymic negative selection of self-specific T cells is associated with several autoimmune diseases, including type 1 diabetes (T1D). The factors that influence the efficacy of thymic negative selection, and the kinetics of thymic output of autoreactive T cells remain ill-defined. We investigated thymic production of β cell-specific T cells using a thymus transplantation model. Thymi from different aged NOD mice representing distinct stages of T1D, were implanted into NOD.scid recipients and the diabetogenicity of the resulting T cell pool examined. Strikingly, the development of diabetes-inducing β cell-specific CD4+ and CD8+ T cells was regulated in an age-dependent manner. NOD.scid recipients of newborn NOD thymi developed diabetes. However, recipients of thymi from 7 and 10 d-old NOD donor mice remained diabetes-free, and exhibited a progressive decline in islet infiltration and β cell-specific CD4+ and CD8+ T cells. A similar temporal decrease in autoimmune infiltration was detected in some but not all tissues of recipient mice implanted with thymi from NOD mice lacking expression of the autoimmune regulator transcription factor, which develop multi-organ T cell-mediated autoimmunity. In contrast, recipients of 10 d or older thymi lacked diabetogenic T cells but developed severe colitis marked by increased effector T cells reactive to intestinal microbiota. These results demonstrate that thymic development of autoreactive T cells is limited to a narrow time-window, and occurs in a reciprocal manner compared to colonic microbiota-responsive T cells in NOD mice.
PMCID: PMC3858497  PMID: 24198282
22.  Leukotriene C4 Activates Mouse Platelets in Plasma Exclusively Through the Type 2 Cysteinyl Leukotriene Receptor1 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(12):10.4049/jimmunol.1302187.
Leukotriene (LT)C4 and its extracellular metabolites, LTD4 and LTE4, mediate airway inflammation. They signal through three specific receptors (CysLT1R, CysLT2R, and GPR99) with overlapping ligand preferences. Here we demonstrate that LTC4, but not LTD4 or LTE4, activates mouse platelets exclusively through CysLT2R. Platelets expressed CysLT1R and CysLT2R proteins. LTC4 induced surface expression of CD62P by WT mouse platelets in platelet-rich plasma (PRP) and caused their secretion of thromboxane A2 and CXCL4. LTC4 was fully active on PRP from mice lacking either CysLT1R or GPR99, but completely inactive on PRP from CysLT2R-null (Cysltr2−/−) mice. LTC4/CysLT2R signaling required an autocrine ADP-mediated response through P2Y12 receptors. LTC4 potentiated airway inflammation in a platelet- and CysLT2R-dependent manner. Thus, CysLT2R on platelets recognizes LTC4 with unexpected selectivity. Nascent LTC4 may activate platelets at a synapse with granulocytes before it is converted to LTD4, promoting mediator generation and the formation of leukocyte/platelet complexes that facilitate inflammation.
PMCID: PMC3869987  PMID: 24244016
23.  Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(12):10.4049/jimmunol.1300873.
Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. Here we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that LPS interaction with CD14 in endothelial cells induced Src-dependent caveolin-1 phosphorylation at Tyr 14. Using TLR4-MD2-CD14 transfected HEK-293 cell line and caveolin-1-deficient (cav-1−/−) mouse lung microvascular endothelial cells, we demonstrated that caveolin-1 phosphorylation at Tyr14 following LPS exposure induced caveolin-1 and TLR4 interaction and thereby TLR4 activation of MyD88, leading to NF-κB activation and generation of proinflammatory cytokines. Exogenous expression of phosphorylation-deficient Y14F caveolin-1 mutant in cav-1−/− mouse pulmonary vasculature rendered the mice resistant to LPS compared to reintroduction of wild type caveolin-1. Thus, caveolin-1 Y14 phosphorylation was required for the interaction with TLR4 and activation of TLR4-MyD88 signaling and sepsis-induced lung inflammation. Inhibiting caveolin-1 Tyr14 phosphorylation and resultant inactivation of TLR4 signaling in pulmonary vascular endothelial cells represents a novel strategy for preventing sepsis-induced lung inflammation and injury.
PMCID: PMC3874812  PMID: 24244013
sepsis; inflammation; lung injury; NF-κB
24.  Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming 
Anaplastic lymphoma kinase (ALK) physiologically expressed only by nervous system cells displays remarkable capacity to transform CD4+ T lymphocytes and other types of non-neural cells. Here we report that activity of nucleophosphmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T-cell lymphomas (ALK+TCL), closely resembles cell activation induced by interleukin 2 (IL-2), the key cytokine supporting growth and survival of normal CD4+ T lymphocytes. Direct comparison of gene expression by ALK+TCL cells treated with an ALK inhibitor and IL-2-dependent ALK-TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene regulation pattern. Depending on the analysis method, up to 67% of the modulated genes could be defined as modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT and IL-2 signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes: CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4 was confirmed at the protein level. In both ALK+TCL and IL-2-stimulated ALK-TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, while transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4+ T lymphocytes, at least in part, by utilizing the pre-existing, IL-2-dependent signaling pathways.
PMCID: PMC3889215  PMID: 24218456
25.  TGF-β-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease via suppressing expansion and killing of effector CD8+ cells 
TGF-β-induced CD4+Foxp3+ T cells (iTregs) have been identified as important prevention and treatment strategies for cell therapy in autoimmune diseases and other disorders. However, the potential use of iTregs as a treatment modality for acute graft-verse-host disease (GVHD) has not been realized because iTregs may be unstable and less suppressive in this disease. Here we restudied the ability of iTregs to prevent and treat acute GVHD in two different mouse models. Our results showed that so long as an appropriate iTreg-generation protocol is used, these iTregs consistently displayed a potent ability to control acute GVHD development and reduce mortality in the acute GVHD animal models. iTreg infusion markedly suppressed the engraftment of donor CD8+ cells and CD4+ cells, the expression of Granzyme A and B, the cytotoxic effect of donor CD8+ cells and the production of T cell cytokines in acute GVHD. We therefore conclude that so long as the right methods for generating iTreg cells have been employed, iTregs can indeed prevent and even treat acute GVHD.
PMCID: PMC4247987  PMID: 25156367

Results 1-25 (216)