PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (503)
 

Clipboard (0)
None
Journals
Year of Publication
1.  The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model 
The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240–280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n = 40); (2) ischemia-reperfusion model group (I/R group: n = 40); and (3) I/R model with antagomir-320 group (I/R + antagomir-320 group: n = 40). Value changes of heart function in transesophageal echocardiography were recorded at various time points (day 1, day 3, day 7, day 15 and day 30) after surgery in each group. Myocardial sections were stained with hematoxylin and eosin (H&E) and examined with optical microscope. The degree of myocardial fibrosis was assessed by Sirius Red staining. Terminal dUTP nick end-labeling (TUNEL) and qRT-PCR methods were used to measure the apoptosis rate and to determine the miR-320 expression levels in myocardial tissues. Transesophageal echocardiography showed that the values of left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP) and ±dp/dtmax in the I/R group were obviously lower than those in the sham group, while the left ventricular end-diastolic pressure (LVEDP) value was higher than that in the sham group. The values of LVEF, LVFS, LVSP and ±dp/dtmax showed a gradual decrease in the I/R group, while the LVEDP value showed an up tendency along with the extension of reperfusion time. The H&E staining revealed that rat myocardial tissue in the I/R group presented extensive myocardial damage; for the I/R + antagomir-320 group, however, the degree of damage in myocardial cells was obviously better than that of the I/R group. The Sirius Red staining results showed that the degree of myocardial fibrosis in the I/R group was more severe along with the extension of the time of reperfusion. For the I/R + antagomir-320 group, the degree of myocardial fibrosis was less severe than that in the I/R group. Tissues samples in both the sham and I/R + antagomir-320 groups showed a lower apoptosis rate compared to I/R group. The qRT-PCR results indicated that miR-320 expression in the I/R group was significantly higher than that in both the sham and I/R + antagomir-320 groups. The expression level of miR-320 is significantly up-regulated in the rat model of myocardial I/R injury, and it may be implicated in the prevention of myocardial I/R injury-triggered left ventricular remodeling.
doi:10.3390/ijms151017442
PMCID: PMC4227171  PMID: 25268616
microRNA-320; myocardial ischemia-reperfusion injury; left ventricular remodeling
2.  Lewis y Regulate Cell Cycle Related Factors in Ovarian Carcinoma Cell RMG-I in Vitro via ERK and Akt Signaling Pathways 
Objective
To investigate the effect of Lewis y overexpression on the expression of proliferation-related factors in ovarian cancer cells.
Methods
mRNA levels of cyclins, CDKs, and CKIs were measured in cells before and after transfection with the α1,2-fucosyltransferase gene by real-time PCR, and protein levels of cyclins, CDKs and CKIs were determined in cells before and after gene transfection by Western blot.
Results
Lewis y overexpression led to an increase in both mRNA and protein expression levels of cyclin A, cyclin D1 and cyclin E in ovarian cancer cells, decrease in both mRNA and protein expression levels of p16 and p21, and decrease of p27 at only the protein expression level without change in its mRNA level. There were no differences in proteins and the mRNA levels of CDK2, CDK4 and CDK6 before and after gene transfection. Anti-Lewis y antibody, ERK and PI3K pathway inhibitors PD98059 and LY294002 reduced the difference in cyclin and CKI expression caused by Lewis y overexpression.
Conclusion
Lewis y regulates the expression of cell cycle-related factors through ERK/MAPK and PI3K/Akt signaling pathways to promote cell proliferation.
doi:10.3390/ijms13010828
PMCID: PMC3269723  PMID: 22312289
Lewis(y) antigen; cell cycle; cyclin; cyclin-dependent kinases; cyclin-dependent kinase inhibitors
3.  Beclin 1 Expression in Ovarian Tissues and Its Effects on Ovarian Cancer Prognosis 
Beclin 1 is an autophagy-associated protein involved in apoptosis and drug resistance, as well as various malignancies. We investigated the expression of Beclin 1 protein in ovarian epithelial tissues and correlated it with the prognosis of ovarian cancer. Beclin 1 protein expression was determined using immunohistochemistry in 148 patients with ovarian epithelial cancer, 26 with ovarian borderline tumor, 25 with benign ovarian tumor, and 30 with normal ovarian tissue. The relationships between Beclin 1 protein expression and ovarian cancer pathological characteristics were analyzed. The risk factors for ovarian cancer prognosis were analyzed using Cox’s regression model. A survival curve was plotted from the follow-up data of 93 patients with ovarian cancer to analyze the effects of Beclin 1 expression on the prognosis of ovarian cancer. The positive rates of Beclin 1 were significantly higher in ovarian epithelial cancer (148) and borderline tumor (26) than in benign ovarian tumor (25) or normal ovarian tissue (30) (all p < 0.001). The surgical stage and Beclin 1 expression were both independent risk factors for ovarian cancer prognosis (both p < 0.05). Patients with high Beclin 1 levels showed better survival than those with low Beclin 1 levels (p = 0.009). Beclin 1 protein is upregulated in ovarian epithelial cancer and is a prognostic factor of ovarian cancer.
doi:10.3390/ijms15045292
PMCID: PMC4013564  PMID: 24675697
autophagy; Beclin 1; ovarian cancer; prognosis; overall survival
4.  Cetuximab-Induced MET Activation Acts as a Novel Resistance Mechanism in Colon Cancer Cells 
Aberrant MET expression and hepatocyte growth factor (HGF) signaling are implicated in promoting resistance to targeted agents; however, the induced MET activation by epidermal growth factor receptor (EGFR) inhibitors mediating resistance to targeted therapy remains elusive. In this study, we identified that cetuximab-induced MET activation contributed to cetuximab resistance in Caco-2 colon cancer cells. MET inhibition or knockdown sensitized Caco-2 cells to cetuximab-mediated growth inhibition. Additionally, SRC activation promoted cetuximab resistance by interacting with MET. Pretreatment with SRC inhibitors abolished cetuximab-mediated MET activation and rendered Caco-2 cells sensitive to cetuximab. Notably, cetuximab induced MET/SRC/EGFR complex formation. MET inhibitor or SRC inhibitor suppressed phosphorylation of MET and SRC in the complex, and MET inhibitor singly led to disruption of complex formation. These results implicate alternative targeting of MET or SRC as rational strategies for reversing cetuximab resistance in colon cancer.
doi:10.3390/ijms15045838
PMCID: PMC4013599  PMID: 24714091
cetuximab; MET; EGFR; SRC; colon cancer
5.  Progressive Changes in Inflammatory and Matrix Adherence of Bronchial Epithelial Cells with Persistent Respiratory Syncytial Virus (RSV) Infection (Progressive Changes in RSV Infection) 
In addition to the acute manifestations of respiratory syncytial virus (RSV), persistent infection may be associated with long-term complications in the development of chronic respiratory diseases. To understand the mechanisms underlying RSV-induced long-term consequences, we established an in vitro RSV (strain A2) infection model using human bronchial epithelial (16HBE) cells that persists over four generations and analyzed cell inflammation and matrix adherence. Cells infected with RSV at multiplicity of infection (MOI) 0.0067 experienced cytolytic or abortive infections in the second generation (G2) or G3 but mostly survived up to G4. Cell morphology, leukocyte and matrix adherence of the cells did not change in G1 or G2, but subsequently, leukocyte adherence and cytokine/chemokine secretion, partially mediated by intercellular adhesion molecule-1 (ICAM-1), increased drastically, and matrix adherence, partially mediated by E-cadherin, decreased until the cells died. Tumor necrosis factor-α (TNF-α) secretion was inhibited by ICAM-1 antibody in infected-16HBE cells, suggesting that positive feedback between TNF-α secretion and ICAM-1 expression may be significant in exacerbated inflammation. These data demonstrate the susceptibility of 16HBE cells to RSV and their capacity to produce long-term progressive RSV infection, which may contribute to inflammation mobilization and epithelial shedding.
doi:10.3390/ijms140918024
PMCID: PMC3794767  PMID: 24005865
respiratory syncytial virus; human bronchial epithelial cells; adherence; adhesive molecule; cytokine; chemokine
6.  Detection of Quantitative Trait Loci (QTLs) for Resistances to Small Brown Planthopper and Rice Stripe Virus in Rice Using Recombinant Inbred Lines 
Small brown planthopper (SBPH) and rice stripe virus (RSV) disease transmitted by SBPH cause serious damage to rice (Oryza sativa L.) in China. In the present study, we screened 312 rice accessions for resistance to SBPH. The indica variety, N22, is highly resistant to SBPH. One hundred and eighty two recombinant inbred lines (RILs) derived from a cross of N22 and the highly susceptible variety, USSR5, were used for quantitative trait locus (QTL) analysis of resistances to SBPH and RSV. In a modified seedbox screening test, three QTLs for SBPH resistance, qSBPH2, qSBPH3 and qSBPH7.1, were mapped on chromosomes 2, 3 and 7, a total explaining 35.1% of the phenotypic variance. qSBPH7.2 and qSBPH11.2, conferring antibiosis against SBPH, were detected on chromosomes 7 and 11 and accounted for 20.7% of the total phenotypic variance. In addition, qSBPH5 and qSBPH7.3, expressing antixenosis to SBPH, were detected on chromosomes 5 and 7, explaining 23.9% of the phenotypic variance. qSBPH7.1, qSBPH7.2 and qSBPH7.3, located in the same region between RM234 and RM429 on chromosome 7, using three different phenotyping methods indicate that the locus or region plays a major role in conferring resistance to SBPH in N22. Moreover, three QTLs, qSTV4, qSTV11.1 and qSTV11.2, for RSV resistance were detected on chromosomes 4 and 11. qSTV11.1 and qSTV11.2 are located in the same region between RM287 and RM209 on chromosome 11. Molecular markers spanning these QTLs should be useful in the development of varieties with resistance to SBPH and RSV.
doi:10.3390/ijms14048406
PMCID: PMC3645751  PMID: 23591851
RIL population; quantitative trait locus; Oryza sativa L
7.  Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine 
Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX). Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX) can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.
doi:10.3390/ijms13033341
PMCID: PMC3317715  PMID: 22489154
aptamer; SELEX; molecular medicine
8.  Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703 
Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.
doi:10.3390/ijms13055818
PMCID: PMC3382817  PMID: 22754333
Pokemon; anoikis; Bim; hepatoma
9.  Elevated Levels of Lewis Y and Integrin α5β1 Correlate with Chemotherapeutic Drug Resistance in Epithelial Ovarian Carcinoma 
Objective
To measure Lewis y and integrin α5β1 expression in epithelial ovarian carcinoma and to correlate the levels of these molecules with ovarian carcinoma chemotherapy and prognosis.
Methods
The study population included 34 ovarian carcinoma patients with chemotherapeutic drug-resistance, six partially drug-sensitive cases, and 52 drug-sensitive cases (92 total). Immunochemistry was used to determine expression of Lewis y antigen and integrin α5β1 in ovarian carcinoma tissues, and correlation of these molecules with chemotherapy resistance was further investigated, Multi-factor logistic regression analysis was applied to investigate: age, surgical stage, grade, subtype of patient cases, metastasis of lymph nodes, residual tumor size, expression levels of Lewis y antigen and integrin α5β1 correlation with ovarian carcinoma chemotherapy resistance.
Results
The expression rates of Lewis y antigen and integrins α5 and β1 were significantly greater in the drug-resistant group (91.17%, 85.29%, 88.24%) than the partially sensitive (50.00%, 33.33%, 50.00%) or sensitive groups (61.54%, 57.69%, 55.77%). Binary logistic regression analysis revealed that surgical stage, residual tumor size, and expression of integrin α5 and Lewis y in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance.
Conclusions
Overexpression of Lewis y and integrin α5 are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.
doi:10.3390/ijms131215588
PMCID: PMC3546651  PMID: 23443083
integrins; Lewis y antigen; ovarian caricinoma; chemoresistance
10.  The Stimulation of IGF-1R Expression by Lewis(y) Antigen Provides a Powerful Development Mechanism of Epithelial Ovarian Carcinoma 
Objective
This study aimed to measure and correlate the expression of insulin-like growth factor receptor-1 (IGF-1R) and the Lewis(y) antigen in ovarian cancer cell lines and tissue samples.
Methods
Reverse transcriptase PCR (RT-PCR), Western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence double-labeling techniques were applied to detect and measure the expression of Lewis(y) and IGF-1R.
Results
In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, IGF-1R expression was significantly upregulated compared with cells that do not overexpress α1,2-FT (P < 0.05). The amount of Lewis(y) expressed on IGF-1R increased 1.81-fold in α1,2-FT-overexpressing cells (P < 0.05), but the ratio of Lewis(y) expressed on IGF-1R to total IGF-1R was unaltered between two cells (P > 0.05). In malignant epithelial ovarian tumors, the positivity rates of Lewis(y) and IGF-1R detection were 88.3% and 93.33%, respectively, which is higher than the positivity rates in marginal (60.00% and 63.33%, all P < 0.05), benign (33.00% and 53.33%, all P < 0.01), and normal (0% and 40%, all P < 0.01) ovarian samples. No correlations were detected in positivity rates of Lewis(y) or IGF-1R expression with respect to clinicopathological parameters in ovarian cancers (all P > 0.05). Both IGF-1R and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P < 0.05).
Conclusion
Overexpression of Lewis(y) results in overexpression of IGF-1R. Both IGF-1R and Lewis(y) are associated with the occurrence and development of ovarian cancers.
doi:10.3390/ijms12106781
PMCID: PMC3211010  PMID: 22072919
epithelial ovarian tumor; Insulin-like growth factor receptor-1; Lewis(y) antigen; immunohistochemistry; immunofluorescence double labeling method
11.  Down-Regulation of Telomerase Activity and Activation of Caspase-3 Are Responsible for Tanshinone I-Induced Apoptosis in Monocyte Leukemia Cells in Vitro 
Tanshinone I (Tan-I) is a diterpene quinone extracted from the traditional herbal medicine Salvia miltiorrhiza Bunge. Recently, Tan-I has been reported to have anti-tumor effects. In this study, we investigated the growth inhibition and apoptosis inducing effects of Tan-I on three kinds of monocytic leukemia cells (U937, THP-1 and SHI 1). Cell viability was measured by MTT assay. Cell apoptosis was assessed by flow cytometry (FCM) and AnnexinV/PI staining. Reverse transcriptase polymerase chain reaction (RT-PCR) and PCR–enzyme-linked immunosorbent assay (ELISA) were used to detect human telomerase reverse transcriptase (hTERT) expression and telomerase activity before and after apoptosis. The activity of caspase-3 was determined by Caspase colorimetric assay kit and Western blot analysis. Expression of the anti-apoptotic gene Survivin was assayed by Western blot and Real-time RT-PCR using the ABI PRISM 7500 Sequence Detection System. The results revealed that Tan-I could inhibit the growth of these three kinds of leukemia cells and cause apoptosis in a time- and dose-dependent manner. After treatment by Tan-I for 48 h, Western blotting showed cleavage of the caspase-3 zymogen protein with the appearance of its 17-kD subunit, and a 89-kD cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also found clearly. The expression of hTERT mRNA as well as activity of telomerase were decreased concurrently in a dose-dependent manner. Moreover, Real-time RT-PCR and Western blot revealed a significant down-regulation of Survivin. We therefore conclude that the induction of apoptosis by Tan-I in monocytic leukemia U937 THP-1 and SHI 1 cells is highly correlated with activation of caspase-3 and decreasing of hTERT mRNA expression and telomerase activity as well as down-regulation of Survivin expression. To our knowledge, this is the first report about the effects of Tan-I on monocytic leukemia cells.
doi:10.3390/ijms11062267
PMCID: PMC2904915  PMID: 20640151
Tanshinone I (Tan-I); telomerase; survivin; leukemia
12.  Differential Expression of Copper-Zinc Superoxide Dismutase Gene of Polygonum sibiricum Leaves, Stems and Underground Stems, Subjected to High-Salt Stress 
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5′ untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3′ untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1–16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO3. The different mRNA levels’ expression of PS-CuZnSOD show the gene’s different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.
doi:10.3390/ijms11125234
PMCID: PMC3100833  PMID: 21614204
P. sibiricum Laxm.; PS-CuZnSOD; RACE; real-time PCR; gene expression
13.  Analysis of Intestinal Injuries Induced by Ricin in Vitro Using SPR Technology and MS Identification 
The present study found that ricin toxicity did not only manifest itself as inhibition of protein synthesis, but also induced apoptosis of immune cells and played an extremely significant role in intestinal injury. In this report, we describe a novel method to estimate binding events occurring on intestinal brush border membranes (BBM) based on SPR technology in an attempt to mimic the real intestinal surface capable of interacting physically and/or actively with certain biological molecules. Combined with HPCE-ESI-MS indentification, we obtained 28 kinds of proteins in BBM that interacted with ricin.
doi:10.3390/ijms10052431
PMCID: PMC2695285  PMID: 19564957
ricin; BBM; SPR; HPCE-ESI-MS
14.  Increased ARPP-19 Expression Is Associated with Hepatocellular Carcinoma 
The cAMP-regulated phosphoprotein 19 (ARPP-19) plays a key role in cell mitotic G2/M transition. Expression of ARPP-19 was increased in human hepatocellular carcinoma (HCC) compared to adjacent non-tumorous liver tissues in 36 paired liver samples, and the level of ARPP-19 in HCC tissues was positively correlated with the tumor size. To determine the interrelationship between ARPP-19 expression and HCC, we silenced ARPP-19 expression in the human hepatocarcinoma HepG2 and SMMC-7721 cells using lentivirus encoding ARPP-19 siRNA. HepG2 and SMMC-7721 cells with ARPP-19 knockdown displayed lowered cell growth rate, retarded colony formation and increased arrest at the G2/M phase transition. Silencing ARPP-19 in HCC cells resulted in decreased protein levels of phospho-(Ser) CDKs substrates and increased levels of inactivated cyclin division cycle 2 (Cdc2). Therefore, ARPP-19 may play a role in HCC pathogenesis through regulating cell proliferation.
doi:10.3390/ijms16010178
PMCID: PMC4307242  PMID: 25547487
hepatocellular carcinoma; ARPP-19; cell proliferation; cell cycle
15.  Ponicidin Induces Apoptosis via JAK2 and STAT3 Signaling Pathways in Gastric Carcinoma 
Ponicidin has a variety of biological effects such as immunoregulatory and anti-inflammatory functions as well as anti-viral functions especially in the upper respiratory tract infection. This study was aimed to elucidate the antitumor effect of ponicidin in gastric carcinoma MKN28 cells and the possible molecular mechanism involved. Cell viability was measured by the Cell Count Kit-8 (CCK8). Cell apoptosis was assessed by flow cytometry as well as cell cycle and reactive oxygen species (ROS) analysis. Western blot analysis was used to detect the active form of caspase-3 as well as Bax and B-cell lymphoma-2 (Bcl-2) expressions after cells were treated with different concentrations of ponicidin. The results revealed that ponicidin could inhibit the growth of MKN28 cells significantly in both a time- and dose-dependent manner. The cell cycle was blocked and ROS generation was increased after the cells were treated with ponicidin. Bcl-2 expression was down-regulated remarkably while Bax expression and the active form of caspase-3 were increased after apoptosis occurred. We therefore conclude that ponicidin exhibited significant growth inhibition of gastric carcinoma cell line MKN28 and induced apoptosis of MKN28 cells via the signaling pathway regulated by Janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). Ponicidin may serve as a potential therapeutic agent for gastric carcinoma.
doi:10.3390/ijms16011576
PMCID: PMC4307321  PMID: 25588213
ponicidin; gastric carcinoma; MKN28 cells; apoptosis; JAK2; STAT3
16.  Identification and Analysis of Differentially-Expressed microRNAs in Japanese Encephalitis Virus-Infected PK-15 Cells with Deep Sequencing 
Japanese encephalitis virus (JEV), a mosquito-borne Flavivirus, causes acute viral encephalitis with high morbidity and mortality in humans and animals. MicroRNAs (miRNAs) are small noncoding RNAs that are important modulators of the intricate host-pathogen interaction networks. However, our knowledge of the changes that occur in miRNAs in host cells after JEV infection is still limited. To understand the molecular pathogenesis of JEV at the level of posttranscriptional regulation, we used Illumina deep sequencing to sequence two small RNA libraries prepared from PK-15 cells before and after JEV infection. We identified 522 and 427 miRNAs in the infected and uninfected cells, respectively. Overall, 132 miRNAs were expressed significantly differently after challenge with JEV: 78 were upregulated and 54 downregulated. The sequencing results for selected miRNAs were confirmed with RT-qPCR. GO analysis of the host target genes revealed that these dysregulated miRNAs are involved in complex cellular pathways, including the metabolic pathway, inflammatory response and immune response. To our knowledge, this is the first report of the comparative expression of miRNAs in PK-15 cells after JEV infection. Our findings will underpin further studies of miRNAs’ roles in JEV replication and identify potential candidates for antiviral therapies against JEV.
doi:10.3390/ijms16012204
PMCID: PMC4307358  PMID: 25608654
Japanese encephalitis virus; microRNA; pathogenesis; deep sequencing
17.  OCT4 Expression and Vasculogenic Mimicry Formation Positively Correlate with Poor Prognosis in Human Breast Cancer 
To evaluate the prognostic value of OCT4 expression and vasculogenic mimicry (VM) in human breast cancer, we examined OCT4 expression and VM formation using immunohistochemistry and CD31/PAS (periodic acid-schiff) double staining on 90 breast cancer specimens. All patients were followed up for five–149 months following surgery. Survival curves were generated using Kaplan-Meier method. Multivariate analysis was performed using Cox regression model to assess the prognostic values. Results showed positive correlation between OCT4 expression and VM formation (p < 0.05). Both OCT4 expression and VM were also positively correlated with lymph node metastasis, higher histological grade, and Nottingham prognostic index (p < 0.05). Patients with OCT4 expression or VM formation exhibited poorer overall survival (OS) and disease-free survival (DFS) than OCT4-negative or VM-negative patients (p < 0.05). OCT4-positive/VM-positive patients also had the worst OS and DFS (p < 0.05). In multivariate survival analysis, VM, Nottingham prognostic index (NPI), and Her2 were independent prognostic factors related to OS and OCT4-positive/VM-positive patients, whereas NPI and Her2 were independent predictors of DFS. These results suggest that a combined OCT4 expression/VM could improve the prognostic judgment for breast cancer patients.
doi:10.3390/ijms151119634
PMCID: PMC4264130  PMID: 25353179
OCT4; vasculogenic mimicry; breast cancer
18.  Predictive Value of Decoy Receptor 3 in Postoperative Nosocomial Bacterial Meningitis 
Nosocomial bacterial meningitis requires timely treatment, but what is difficult is the prompt and accurate diagnosis of this disease. The aim of this study was to assess the potential role of decoy receptor 3 (DcR3) levels in the differentiation of bacterial meningitis from non-bacterial meningitis. A total of 123 patients were recruited in this study, among them 80 patients being with bacterial meningitis and 43 patients with non-bacterial meningitis. Bacterial meningitis was confirmed by bacterial culture of cerebrospinal fluid (CSF) culture and enzyme-linked immunosorbent assay (ELISA) was used to detect the level of DcR3 in CSF. CSF levels of DcR3 were statistically significant between patients with bacterial meningitis and those with non-bacterial meningitis (p < 0.001). A total of 48.75% of patients with bacterial meningitis received antibiotic >24 h before CSF sampling, which was much higher than that of non-bacterial meningitis. CSF leucocyte count yielded the highest diagnostic value, with an area under the receiver operating characteristic curve (ROC) of 0.928, followed by DcR3. At a critical value of 0.201 ng/mL for DcR3, the sensitivity and specificity were 78.75% and 81.40% respectively. DcR3 in CSF may be a valuable predictor for differentiating patients with bacterial meningitis from those with non-bacterial meningitis. Further studies are needed for the validation of this study.
doi:10.3390/ijms151119962
PMCID: PMC4264149  PMID: 25372942
decoy receptor 3; DcR3; bacterial meningitis; diagnosis
19.  WISP1 Polymorphisms Contribute to Platinum-Based Chemotherapy Toxicity in Lung Cancer Patients 
Platinum-based chemotherapy toxicity is always one of the serious problems from which lung cancer patients suffer. The genetic polymorphism of WISP1 was revealed to be associated with susceptibility and platinum-based chemotherapy response in our previous studies. In this study, we aimed to investigate the relationship of WISP1 genetic polymorphisms with platinum-based chemotherapy toxicity in lung cancer patients. A total of 412 lung cancer patients were enrolled in this study, and 28 polymorphisms of the WISP1 gene were genotyped by SequenomMassARRAY. We found that WISP1 polymorphisms (rs2929965, rs2929969, rs2929970, rs2929973 and rs754958) were related to the overall chemotherapy toxicity of lung cancer in subgroup analyses. Rs16904853, rs2929970, rs2977549 and rs2977551 (p = 0.021, 0.028, 0.024, 0.048, respectively) polymorphisms were significantly associated with hematologic toxicity. Rs2929946, rs2929970, rs2977519, rs2977536, rs3739262 and rs754958 (p = 0.031, 0.046, 0.029, 0.016, 0.042, 0.035, respectively) polymorphisms were significantly associated with the gastrointestinal toxicity of lung cancer. Genotypes of WISP1 may be novel and useful biomarkers for predicting platinum-based chemotherapy toxicity in lung cancer patients.
doi:10.3390/ijms151121011
PMCID: PMC4264209  PMID: 25405734
WISP1; lung cancer; genetic polymorphism; chemotherapy toxicity
20.  High-Dose Diosgenin Reduces Bone Loss in Ovariectomized Rats via Attenuation of the RANKL/OPG Ratio 
The aim of this study was to evaluate effect of diosgenin (DG) on rats that had osteoporosis-like features induced by ovariectomy (OVX). Seventy-two six-month-old female Wistar rats were subjected to either ovariectomy (n = 60) or Sham operation (SHAM group, n = 12). Beginning at one week post-ovariectomy, the OVX rats were treated with vehicle (OVX group, n = 12), estradiol valerate (EV group, n = 12), or DG at three doses (DG-L, -M, -H group, n = 12, respectively). After a 12-week treatment, administration of EV or DG-H inhibited OVX-induced weight gain, and administration of EV or DG-H or DG-M had a significantly uterotrophic effect. Bone mineral density (BMD) and indices of bone histomorphometry of tibia were measured. Levels of protein and mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) in tibia were evaluated by immunohistochemistry and in situ hybridization. Our results show that DG at a high dose (DG-H) had a significant anti-osteoporotic effect compared to OVX control. DG-H treatment down-regulated expression of RANKL and up-regulated expression of OPG significantly in tibia from OVX rats compared to control, and thus lowered the RANKL/OPG ratio. This suggests that the anti-osteoporotic effect of DG might be associated with modulating the RANKL/OPG ratio and DG had potential to be developed as alternative therapeutic agents of osteoporosis induced by postmenopause.
doi:10.3390/ijms150917130
PMCID: PMC4200779  PMID: 25257532
diosgenin; bone loss; ovariectomized rats; osteoprotegerin; receptor activator of nuclear factor kappa-B ligand
21.  A Combined Experimental and Computational Study of Vam3, a Derivative of Resveratrol, and Syk Interaction 
Spleen tyrosine kinase (Syk) plays an indispensable role through preliminary extracellular antigen-induced crosslinking of Fc receptor (FcR) in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3, a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular dynamics simulation approaches were performed to get more detailed information about the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively. In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also observed. These results indicate that ring-C and D play an essential role in Vam3–Syk interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid the design of novel Syk inhibitors in the future.
doi:10.3390/ijms150917188
PMCID: PMC4200806  PMID: 25257535
Vam3; Syk; docking; molecular dynamics simulation; Syk inhibitor
22.  Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice 
Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ), and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs), MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway.
doi:10.3390/ijms150813135
PMCID: PMC4159784  PMID: 25062348
Shox2; temporomandibular joint; articular cartilage; extracellular matrix; matrix metalloproteinase
23.  DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways 
Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma.
doi:10.3390/ijms150712422
PMCID: PMC4139851  PMID: 25026173
esophageal carcinoma; DADS; apoptosis; animal model
24.  4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats 
4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats.
doi:10.3390/ijms150712861
PMCID: PMC4139878  PMID: 25050781
4-hydroxyphenylacetic acid; seawater drowning; hypoxia-inducible factor 1α; acute lung injury
25.  Computational Study on Substrate Specificity of a Novel Cysteine Protease 1 Precursor from Zea mays 
Cysteine protease 1 precursor from Zea mays (zmCP1) is classified as a member of the C1A family of peptidases (papain-like cysteine protease) in MEROPS (the Peptidase Database). The 3D structure and substrate specificity of the zmCP1 is still unknown. This study is the first one to build the 3D structure of zmCP1 by computer-assisted homology modeling. In order to determine the substrate specificity of zmCP1, docking study is used for rapid and convenient analysis of large populations of ligand–enzyme complexes. Docking results show that zmCP1 has preference for P1 position and P2 position for Arg and a large hydrophobic residue (such as Phe). Gly147, Gly191, Cys189, and Asp190 are predicted to function as active residues at the S1 subsite, and the S2 subsite contains Leu283, Leu193, Ala259, Met194, and Ala286. SIFt results indicate that Gly144, Arg268, Trp308, and Ser311 play important roles in substrate binding. Then Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method was used to explain the substrate specificity for P1 position of zmCp1. This study provides insights into the molecular basis of zmCP1 activity and substrate specificity.
doi:10.3390/ijms150610459
PMCID: PMC4100162  PMID: 24921705
homology modeling; molecular dynamics; MM-PBSA; cysteine protease 1

Results 1-25 (503)