Search tips
Search criteria

Results 1-25 (171)

Clipboard (0)
more »
Year of Publication
more »
1.  Associations of Educational Attainment, Occupation, Social Class and Major Depressive Disorder among Han Chinese Women 
PLoS ONE  2014;9(1):e86674.
The prevalence of major depressive disorder (MDD) is higher in those with low levels of educational attainment, the unemployed and those with low social status. However the extent to which these factors cause MDD is unclear. Most of the available data comes from studies in developed countries, and these findings may not extrapolate to developing countries. Examining the relationship between MDD and socio economic status in China is likely to add to the debate because of the radical economic and social changes occurring in China over the last 30 years.
Principal findings
We report results from 3,639 Chinese women with recurrent MDD and 3,800 controls. Highly significant odds ratios (ORs) were observed between MDD and full time employment (OR = 0.36, 95% CI = 0.25–0.46, logP = 78), social status (OR = 0.83, 95% CI = 0.77–0.87, logP = 13.3) and education attainment (OR = 0.90, 95% CI = 0.86–0.90, logP = 6.8). We found a monotonic relationship between increasing age and increasing levels of educational attainment. Those with only primary school education have significantly more episodes of MDD (mean 6.5, P-value = 0.009) and have a clinically more severe disorder, while those with higher educational attainment are likely to manifest more comorbid anxiety disorders.
In China lower socioeconomic position is associated with increased rates of MDD, as it is elsewhere in the world. Significantly more episodes of MDD occur among those with lower educational attainment (rather than longer episodes of disease), consistent with the hypothesis that the lower socioeconomic position increases the likelihood of developing MDD. The phenomenology of MDD varies according to the degree of educational attainment: higher educational attainment not only appears to protect against MDD but alters its presentation, to a more anxious phenotype.
PMCID: PMC3909008  PMID: 24497966
2.  Emergence and Continuous Evolution of Genotype 1E Rubella Viruses in China 
Journal of Clinical Microbiology  2012;50(2):353-363.
In China, rubella vaccination was introduced into the national immunization program in 2008, and a rubella epidemic occurred in the same year. In order to know whether changes in the genotypic distribution of rubella viruses have occurred in the postvaccination era, we investigate in detail the epidemiological profile of rubella in China and estimate the evolutionary rate, molecular clock phylogeny, and demographic history of the predominant rubella virus genotypes circulating in China using Bayesian Markov chain Monte Carlo phylodynamic analyses. 1E was found to be the predominant rubella virus genotype since its initial isolation in China in 2001, and no genotypic shift has occurred since then. The results suggest that the global 1E genotype may have diverged in 1995 and that it has evolved at a mutation rate of 1.65 × 10−3 per site per year. The Chinese 1E rubella virus isolates were grouped into either cluster 1 or cluster 2, which likely originated in 1997 and 2006, respectively. Cluster 1 viruses were found in all provinces examined in this study and had a mutation rate of 1.90 × 10−3 per site per year. The effective number of infections remained constant until 2007, and along with the introduction of rubella vaccine into the national immunization program, although the circulation of cluster 1 viruses has not been interrupted, some viral lineages have disappeared, and the epidemic started a decline that led to a decrease in the effective population size. Cluster 2 viruses were found only in Hainan Province, likely because of importation.
PMCID: PMC3264136  PMID: 22162559
3.  Single Endemic Genotype of Measles Virus Continuously Circulating in China for at Least 16 Years 
PLoS ONE  2012;7(4):e34401.
The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV) isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%–100% and 84.7%–100%, H1b were 97.1%–100% and 95.3%–100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR). Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years.
PMCID: PMC3332093  PMID: 22532829
4.  A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway 
Journal of Experimental Botany  2014;65(12):3201-3213.
We find that CsGAMYB1, a positive regulator of GA signalling, can regulate sex expression of cucumber. This provides a new insight into the mechanism of GA in sex determination.
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and has been used as a model plant for sex determination. It is well known that sex differentiation of cucumber can be regulated by phytohormones, such as gibberellic acid (GA) and ethylene. The molecular mechanism of female sex expression modulated by ethylene has been widely understood, but how GA controls male sex expression remains elusive. In hermaphroditic Arabidopsis and rice, GA can regulate stamen and anther development via the transcriptional regulation of GAMYB. Here we characterized a GAMYB homologue CsGAMYB1 in cucumber. We found that CsGAMYB1 is predominantly expressed in male flower buds, where its expression is upregulated by GA3 treatment. CsGAMYB1 protein is localized in the nucleus. CsGAMYB1 can partially rescue stamen development and fertility phenotypes of an Arabidopsis myb33 myb65 double mutant. However, constitutive overexpression of CsGAMYB1 in wild-type Arabidopsis resulted in male sterility, which mimics the effect of GA overdose in flower development. Knockdown of CsGAMYB1 in cucumber decreases the ratio of nodes with male and female flowers, and ethylene is not involved in this process. Our data suggest that CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway.
PMCID: PMC4071842  PMID: 24790111
CsGAMYB1; cucumber; ethylene; GAMYB; gibberellin; sex expression.
5.  Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009 
PLoS ONE  2013;8(9):e73374.
China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies.
Principal Findings
Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure.
Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.
PMCID: PMC3779233  PMID: 24073194
6.  Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data 
PLoS ONE  2013;8(8):e71152.
Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development.
PMCID: PMC3743905  PMID: 23967161
7.  The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China 
Parasites & Vectors  2011;4:221.
The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis.
Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P < 0.05) in Wangshanzhuang village.
Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity mainly occurred from 19:00 to 21:00. Thus, we propose that future vector control against An. sinensis and Cx. tritaeniorhynchus in the areas along the Huang-Huai River of central China should target the interface of human activity with domestic animals and adopt before human hosts go to bed at night.
PMCID: PMC3267684  PMID: 22115320
Host-seeking behavior; mosquito; culicine species; Anopheles vectors; ecology; malaria elimination
8.  Crystallization and preliminary crystallographic analysis of Gibberella zeae extracellular lipase 
G. zeae extracellular lipase has been overexpressed, purified and crystallized. Diffraction data were collected to 2.8 Å resolution.
Fusarium head blight, one of the most destructive crop diseases, is mainly caused by Fusarium graminearum (known in its sexual stage as Gibberella zeae). F. graminearum secretes various extracellular enzymes that have been hypothesized to be involved in host infection. One of the extracellular enzymes secreted by this organism is the G. zeae extracellular lipase (GZEL), which is encoded by the FGL1 gene. In order to solve the crystal structure of GZEL and to gain a better understanding of the biological functions of the protein and of possible inhibitory mechanisms of lipase inhibitors, recombinant GZEL was crystallized at 291 K using PEG 3350 as a precipitant. A data set was collected to 2.8 Å resolution from a single flash-cooled crystal (100 K). The crystal belonged to space group P212121, with unit-cell parameters a = 78.4, b = 91.0, c = 195.8 Å, α = β = γ = 90°. The presence of four molecules was assumed per asymmetric unit, which gave a Matthews coefficient of 2.6 Å3 Da−1.
PMCID: PMC2531274  PMID: 18765911
extracellular lipases; Fusarium graminearum; Gibberella zeae; fusarium head blight
9.  Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice 
Cardiovascular Research  2013;101(1):87-96.
Toll-interacting protein (Tollip) is a critical regulator of the Toll-like receptor-mediated signalling pathway. However, the role of Tollip in chronic pressure overload-induced cardiac hypertrophy remains unclear. This study aimed to determine the functional significance of Tollip in the regulation of aortic banding-induced cardiac remodelling and its underlying mechanisms.
Methods and results
First, we observed that Tollip was down-regulated in human failing hearts and murine hypertrophic hearts, as determined by western blotting and RT–PCR. Using cultured neonatal rat cardiomyocytes, we found that adenovirus vector-mediated overexpression of Tollip limited angiotensin II-induced cell hypertrophy; whereas knockdown of Tollip by shRNA exhibited the opposite effects. We then generated a transgenic (TG) mouse model with cardiac specific-overexpression of Tollip and subjected them to aortic banding (AB) for 8 weeks. When compared with AB-treated wild-type mouse hearts, Tollip-TGs showed a significant attenuation of cardiac hypertrophy, fibrosis, and dysfunction, as measured by echocardiography, immune-staining, and molecular/biochemical analysis. Conversely, a global Tollip-knockout mouse model revealed an aggravated cardiac hypertrophy and accelerated maladaptation to chronic pressure overloading. Mechanistically, we discovered that Tollip interacted with AKT and suppressed its downstream signalling pathway. Pre-activation of AKT in cardiomyocytes largely offset the Tollip-elicited anti-hypertrophic effects.
Our results provide the first evidence that Tollip serves as a negative regulator of pathological cardiac hypertrophy by blocking the AKT signalling pathway.
PMCID: PMC3968303  PMID: 24285748
Tollip; Cardiac remodelling; Pressure overload; AKT; Cardiomyocyte hypertrophy
10.  Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment 
GigaScience  2014;3(1):27.
Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].
Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology.
Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
Electronic supplementary material
The online version of this article (doi:10.1186/2047-217X-3-27) contains supplementary material, which is available to authorized users.
PMCID: PMC4322438  PMID: 25671092
Penguins; Avian genomics; Evolution; Adaptation; Antarctica
11.  Interaction of type 2 diabetes mellitus with Chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case–control study in Chinese population 
Myocardial infarction (MI) is a serious complication of Coronary Artery Disease (CAD). Previous studies have identified genetic variants on chromosome 9p21 and 6p24 that are associated with CAD, but further studies need to be conducted to investigate whether these genetic variants are associated with the pathogenesis of MI. We therefore performed this study to assess the association between the risk of MI and SNP rs10757274 on chromosome 9p21 and SNP rs6903956 on chromosome 6p24, and to explore the gene-environment interactions in a Chinese population.
A hospital-based case–control study, consisting of 502 MI patients and 308 controls, was conducted in a Chinese population. Demographic, behavioral information and clinical characteristics were collected, and genotyping of the two SNPs was performed using single base primer extension genotyping technology. The unconditional logistic regression (ULR) method was adopted to assess the association of the two SNPs with MI risk. Both generalized multifactor dimensionality reduction (GMDR) and ULR methods were applied to explore the effect of gene-environment interactions on the risk of MI.
After adjusting for covariates, it was observed that SNP rs10757274 on chromosome 9p21 was significantly associated with MI. Compared with subjects carrying the AA genotype, subjects carrying the GA or GG genotypes had a higher MI risk (ORa = 1.52, 95% CI:1.06–2.19, pa = 0.0227; ORa = 2.40, 95% CI:1.51–3.81, pa = 0.0002, respectively). Furthermore, a two-factor gene-environment interaction model of CDKN2A/B (rs10757274) and type 2 diabetes mellitus (T2DM) was identified to be the best model by GMDR (p = 0.0107), with a maximum prediction accuracy of 59.18%, and a maximum Cross-validation Consistency of 10/10. By using the ULR method, additive interaction analysis found that the combined effect resulted in T2DM-positive subjects with genotype GG/GA having an MI risk 4.38 times that of T2DM-negative subjects with genotype AA (ORadd = 4.38, 95% CI:2.56–7.47, padd < 0.0001).
These results show that gene polymorphism of CDKN2A/B (rs10757274) is associated with MI risk in a Chinese population. Furthermore, T2DM is likely to have an interaction with CDKN2A/B (rs10757274) that contributes to the risk of MI.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2261-14-170) contains supplementary material, which is available to authorized users.
PMCID: PMC4255939  PMID: 25430018
12.  Ginsenoside 20(S)-Rg3 Targets HIF-1α to Block Hypoxia-Induced Epithelial-Mesenchymal Transition in Ovarian Cancer Cells 
PLoS ONE  2014;9(9):e103887.
The prognosis of patients with ovarian cancer has remained poor mainly because of aggressive cancer progression. Since epithelial-mesenchymal transition (EMT) is an important mechanism mediating invasion and metastasis of cancer cells, targeting the EMT process with more efficacious and less toxic compounds to inhibit metastasis is of great therapeutic value for the treatment of ovarian cancer. We have found for the first time that the ginsenoside 20(S)-Rg3, a pharmacologically active component of the traditional Chinese herb Panax ginseng, potently blocks hypoxia-induced EMT of ovarian cancer cells in vitro and in vivo. Mechanistic studies confirm the mode of action of 20(S)-Rg3, which reduces the expression of hypoxia-inducible factor 1α (HIF-1α) by activating the ubiquitin-proteasome pathway to promote HIF-1α degradation. A decrease in HIF-1α in turn leads to up-regulation, via transcriptional suppression of Snail, of the epithelial cell-specific marker E-cadherin and down-regulation of the mesenchymal cell-specific marker vimentin under hypoxic conditions. Importantly, 20(S)-Rg3 effectively inhibits EMT in nude mouse xenograft models of ovarian cancer, promising a novel therapeutic agent for anticancer therapy.
PMCID: PMC4157750  PMID: 25197976
13.  Non-Polio Enteroviruses from Acute Flaccid Paralysis Surveillance in Shandong Province, China, 1988–2013 
Scientific Reports  2014;4:6167.
Enteroviruses (EVs) are important human pathogens associated with various clinical syndromes. This study represents an overview of non-polio enteroviruses (NPEVs) isolated from acute flaccid paralysis (AFP) surveillance in Shandong Province, China from 1988 to 2013. Altogether 792 and 170 NPEV isolates were isolated from stool specimens of 9263 AFP cases and 1059 contacts, respectively. Complete VP1 sequencing and typing on all 962 isolates revealed 53 NPEV types in which echovirus (E) 6 (7.6%), E14 (7.6%), E11 (7.4%), coxsackievirus (CV) B3 (7.4%), E25 (5.6%), CVB5 (4.9%), E7 (4.5%) and EV-A71 (4.4%) were the eight most commonly reported serotypes. Distinct summer–fall seasonality was observed, with June–October accounting for 79.3% of isolation from AFP cases with known month of specimen collection. Increase of isolation of EV-A71 and CVA—the predominant pathogens for the hand, foot, and mouth disease—was observed in recent years. Sequence analysis on VP1 coding region of EV-A71 and E6 suggested Shandong strains had great genetic divergence with isolates from other countries. The results described in this study provide valuable information on the circulation and emergence of different EV types in the context of limited EV surveillance in China.
PMCID: PMC4141246  PMID: 25145609
14.  Aurora-A contributes to cisplatin resistance and lymphatic metastasis in non-small cell lung cancer and predicts poor prognosis 
Platinum-based chemotherapy improves survival among patients with non-small cell lung cancer (NSCLC), but the efficiency is limited due to resistance. In this study, we aimed to identify the expression of Aurora-A and its correlation with cisplatin resistance and prognosis in NSCLC.
We used immunohistochemical analysis to determine the expression of Aurora-A protein in 102 NSCLC patients treated by surgery and adjuvant cisplatin-based chemotherapy. The prognostic significances were assessed by Kaplan-Meier survival estimates and Cox models. The potential role of Aurora-A in the regulation of cisplatin resistance in NSCLC cells was examined by transfections using expression vector and small interfering RNA or using small-molecule inhibitors.
Aurora-A expression was significantly associated with clinical stage (p = 0.018), lymph node metastasis (p = 0.038) and recurrence (p = 0.005), and was an independent prognostic parameter in multivariate analysis. High level of Aurora-A expression predicted poorer overall survival (OS) and progression-free survival (PFS). In vitro data showed that Aurora-A expression was elevated in cisplatin-resistant lung cancer cells, and overexpression or knockdown of Aurora-A resulted in increased or decreased cellular resistance to cisplatin. Furthermore, inhibition of Aurora-A reversed the migration ability of cisplatin-resistant cells.
The current findings suggest that high Aurora-A expression is correlated with cisplatin-based chemotherapeutic resistance and predicts poor patient survival in NSCLC. Aurora-A might serve as a predictive biomarker of drug response and therapeutic target to reverse chemotherapy resistance.
PMCID: PMC4237886  PMID: 25082261
Non-small cell lung cancer; Aurora-A; Cisplatin resistance; Prognosis; Metastasis
15.  An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer 
Many methods have been developed to identify disease genes and further module biomarkers of complex diseases based on gene expression data. It is generally difficult to distinguish whether the variations in gene expression are causative or merely the effect of a disease. The limitation of relying on gene expression data alone highlights the need to develop new approaches that can explore various data to reflect the casual relationship between network modules and disease traits.
In this work, we developed a novel network-based approach to identify putative causal module biomarkers of complex diseases by integrating heterogeneous information, for example, epigenomic data, gene expression data, and protein–protein interaction network. We first formulated the identification of modules as a mathematical programming problem, which can be solved efficiently and effectively in an accurate manner. Then, we applied our approach to colorectal cancer (CRC) and identified several network modules that can serve as potential module biomarkers for characterizing CRC. Further validations using three additional gene expression datasets verified their candidate biomarker properties and the effectiveness of the method. Functional enrichment analysis also revealed that the identified modules are strongly related to hallmarks of cancer, and the enriched functions, such as inflammatory response, receptor and signaling pathways, are specific to CRC.
Through constructing a transcription factor (TF)-module network, we found that aberrant DNA methylation of genes encoding TF considerably contributes to the activity change of some genes, which may function as causal genes of CRC, and that can also be exploited to develop efficient therapies or effective drugs.
Our method can potentially be extended to the study of other complex diseases and the multiclassification problem.
PMCID: PMC3721155  PMID: 22967703
16.  The Potential Biomarker Panels for Identification of Major Depressive Disorder (MDD) Patients with and without Early Life Stress (ELS) by Metabonomic Analysis 
PLoS ONE  2014;9(5):e97479.
The lack of the disease biomarker to support objective laboratory tests still constitutes a bottleneck in the clinical diagnosis and evaluation of major depressive disorder (MDD) and its subtypes. We used metabonomic techniques to screen the diagnostic biomarker panels from the plasma of MDD patients with and without early life stress (ELS) experience.
Plasma samples were collected from 25 healthy adults and 46 patients with MDD, including 23 patients with ELS and 23 patients without ELS. Furthermore, gas chromatography/mass spectrometry (GC/MS) coupled with multivariate statistical analysis was used to identify the differences in global plasma metabolites among the 3 groups.
The distinctive metabolic profiles exist either between healthy subjects and MDD patients or between the MDD patients with ELS experience (ELS/MDD patients) and the MDD patients without it (non-ELS/MDD patients), and some diagnostic panels of feature metabolites' combination have higher predictive potential than the diagnostic panels of differential metabolites.
These findings in this study have high potential of being used as novel laboratory diagnostic tool for MDD patients and it with ELS or not in clinical application.
PMCID: PMC4037179  PMID: 24870353
17.  EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications 
As two kinds of important gene expression regulators, both epigenetic modification and microRNA (miRNA) can play significant roles in a wide range of human diseases. Recently, many studies have demonstrated that epigenetics and miRNA can affect each other in various ways. In this study, we established the EpimiR database, which collects 1974 regulations between 19 kinds of epigenetic modifications (such as DNA methylation, histone acetylation, H3K4me3, H3S10p) and 617 miRNAs across seven species (including Homo sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Epstein–Barr virus, Canis familiaris and Arabidopsis thaliana) from >300 references in the literature. These regulations can be divided into two parts: miR2Epi (103 entries describing how miRNA regulates epigenetic modification) and Epi2miR (1871 entries describing how epigenetic modification affects miRNA). Each entry of EpimiR not only contains basic descriptions of the validated experiment (method, species, reference and so on) but also clearly illuminates the regulatory pathway between epigenetics and miRNA. As a supplement to the curated information, the EpimiR extends to gather predicted epigenetic features (such as predicted transcription start site, upstream CpG island) associated with miRNA for users to guide their future biological experiments. Finally, EpimiR offers download and submission pages. Thus, EpimiR provides a fairly comprehensive repository about the mutual regulation between epigenetic modifications and miRNAs, which will promote the research on the regulatory mechanism of epigenetics and miRNA.
Database URL:
PMCID: PMC4037167  PMID: 24682734
18.  Detection of type 2 diabetes related modules and genes based on epigenetic networks 
BMC Systems Biology  2014;8(Suppl 1):S5.
Type 2 diabetes (T2D) is one of the most common chronic metabolic diseases characterized by insulin resistance and the decrease of insulin secretion. Genetic variation can only explain part of the heritability of T2D, so there need new methods to detect the susceptibility genes of the disease. Epigenetics could establish the interface between the environmental factor and the T2D Pathological mechanism.
Based on the network theory and by combining epigenetic characteristics with human interactome, the weighted human DNA methylation network (WMPN) was constructed, and a T2D-related subnetwork (TMSN) was obtained through T2D-related differentially methylated genes. It is found that TMSN had a T2D specific network structure that non-fatal metabolic disease causing genes were often located in the topological and functional periphery of network. Combined with chromatin modifications, the weighted chromatin modification network (WCPN) was built, and a T2D-related chromatin modification pattern subnetwork was obtained by the TMSN gene set. TCSN had a densely connected network community, indicating that TMSN and TCSN could represent a collection of T2D-related epigenetic dysregulated sub-pathways. Using the cumulative hypergeometric test, 24 interplay modules of DNA methylation and chromatin modifications were identified. By the analysis of gene expression in human T2D islet tissue, it is found that there existed genes with the variant expression level caused by the aberrant DNA methylation and (or) chromatin modifications, which might affect and promote the development of T2D.
Here we have detected the potential interplay modules of DNA methylation and chromatin modifications for T2D. The study of T2D epigenetic networks provides a new way for understanding the pathogenic mechanism of T2D caused by epigenetic disorders.
PMCID: PMC4080446  PMID: 24565181
DNA methylation; chromatin modifications; network; module; T2D
19.  Inflammatory Markers and Risk of Type 2 Diabetes 
Diabetes Care  2012;36(1):166-175.
There has been growing evidence that inflammatory markers play a role in the development of type 2 diabetes. We aimed to systematically review prospective studies on the associations of elevated levels of interleukin-6 (IL-6) and C-reactive protein (CRP) with increased risk of type 2 diabetes by conducting a meta-analysis.
A systematic search of the PubMed, EMBASE, ISI Web of Knowledge, and Cochrane Library databases up until 10 February 2012 was conducted to retrieve prospective studies matched to search terms. We used generalized least-squares trend estimation to assess dose-response relationships. The summary risk estimates were pooled using either fixed-effects or random-effects models to incorporate between-study variation.
The meta-analysis, including 10 prospective studies, with a total of 19,709 participants and 4,480 cases, detected a significant dose-response association of IL-6 levels with type 2 diabetes risk (relative risk [RR] 1.31 [95% CI 1.17–1.46]). For CRP, the meta-analysis involving 22 cohorts, with a total of 40,735 participants and 5,753 cases, showed that elevated CRP levels were significantly associated with increased risk of type 2 diabetes (1.26 [1.16–1.37]), with the absence of publication bias. Sensitivity and subgroup analyses further supported the associations.
This meta-analysis provides further evidence that elevated levels of IL-6 and CRP are significantly associated with increased risk of type 2 diabetes.
PMCID: PMC3526249  PMID: 23264288
20.  Rhesus macaques develop metabolic syndrome with reversible vascular dysfunction responsive to pioglitazone 
Circulation  2011;124(1):77-86.
The metabolic syndrome (MetS) is a constellation of clinical features that include central obesity, hypertension, atherogenic dyslipidemia, and insulin resistance (IR). However, the concept remains controversial; it has been debated whether MetS represents nothing more than simultaneous co-occurrence of individual risk factors, or whether there are common, shared pathophysiologic mechanisms that link the individual components.
Methods and Results
To investigate the emergence of metabolic and cardiovascular components during the development of MetS, we identified MetS-predisposed animals (n=35) in a large population of rhesus macaques (Macaca mulatta, 12.7 ± 2.9 years old, n=408), acclimated them to standardized conditions, and monitored the progression of individual component features over 18 months. In total 18 MetS animals with recently developed fasting hyperinsulinemia, central obesity, hypertension, and atherogenic dyslipidemia, we found that individual metabolic and cardiovascular components track together during the transition from pre-MetS to onset of MetS; MetS was associated with a 60% impairment of flow mediated dilation (FMD), establishing the mechanistic link with vascular dysfunction. Pioglitazone treatment (3 mg/kg body weight/day for 6 weeks), a PPARγ agonist, reversibly improved atherogenic dyslipidemia and IR, and fully restored FMD with persistent benefits.
Co-emergence of metabolic and cardiovascular components during MetS progression and complete normalization of vascular dysfunction with PPARγ agonists suggest shared underlying mechanisms rather than separate processes, arguing for the benefit of early intervention of MetS components. Predictive NHP models of MetS should be highly valuable in mechanistic and translational studies on the pathogenesis of MetS in relation to cardiovascular disease and diabetes.
PMCID: PMC3775509  PMID: 21690491
Metabolic Syndrome (MetS); Nonhuman Primates; Cardiovascular Disease; Pathogenesis; PPARγ agonists
21.  Disruption of mindin exacerbates cardiac hypertrophy and fibrosis 
Cardiac hypertrophy is a response of the myocardium to increased workload and is characterised by an increase of myocardial mass and an accumulation of extracellular matrix (ECM). As an ECM protein, an integrin ligand, and an angiogenesis inhibitor, all of which are key players in cardiac hypertrophy, mindin is an attractive target for therapeutic intervention to treat or prevent cardiac hypertrophy and heart failure. In this study, we investigated the role of mindin in cardiac hypertrophy using littermate Mindin knockout (Mindin−/−) and wild-type (WT) mice. Cardiac hypertrophy was induced by aortic banding (AB) or angiotensin II (Ang II) infusion in Mindin−/− and WT mice. The extent of cardiac hypertrophy was quantitated by echocardiography and by pathological and molecular analyses of heart samples. Mindin−/− mice were more susceptible to cardiac hypertrophy and fibrosis in response to AB or Ang II stimulation than wild type. Cardiac function was also markedly exacerbated during both systole and diastole in Mindin−/− mice in response to hypertrophic stimuli. Western blot assays further showed that the activation of AKT/glycogen synthase kinase 3β (GSK3β) signalling in response to hypertrophic stimuli was significantly increased in Mindin−/− mice. Moreover, blocking AKT/GSK3β signalling with a pharmacological AKT inhibitor reversed cardiac abnormalities in Mindin−/− mice. Our data show that mindin, as an intrinsic cardioprotective factor, prevents maladaptive remodelling and the transition to heart failure by blocking AKT/GSK3β signalling.
PMCID: PMC3734934  PMID: 22367478
Mindin; Hypertrophy; Remodelling; Signal transduction; AKT
22.  Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α (PGC-1α) Enhances Engraftment and Angiogenesis of Mesenchymal Stem Cells in Diabetic Hindlimb Ischemia 
Diabetes  2012;61(5):1153-1159.
To examine whether the peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), a key regulator linking angiogenesis and metabolism, could enhance the engraftment and angiogenesis of mesenchymal stem cells (MSCs) in diabetic hindlimb ischemia, we engineered the overexpression of PGC-1α within MSCs using an adenoviral vector encoding green fluorescent protein and PGC-1α, and then tested the survivability and angiogenesis of MSCs in vitro and in vivo. Under the condition of hypoxia concomitant with serum deprivation, the overexpression of PGC-1α in MSCs resulted in a higher expression level of hypoxia-inducible factor-1α (Hif-1α), a greater ratio of B-cell lymphoma leukemia-2 (Bcl-2)/Bcl-2–associated X protein (Bax), and a lower level of caspase 3 compared with the controls, followed by an increased survival rate and an elevated expression level of several proangiogenic factors. In vivo, the MSCs modified with PGC-1α could significantly increase the blood perfusion and capillary density of ischemic hindlimb of the diabetic rats, which was correlated to an improved survivability of MSCs and an increased level of several proangiogenic factors secreted by MSCs. We identified for the first time that PGC-1α could enhance the engraftment and angiogenesis of MSCs in diabetic hindlimb ischemia.
PMCID: PMC3331776  PMID: 22266669
23.  Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1–Smad signalling 
Cardiovascular Research  2011;92(1):85-94.
Mindin is a secreted extracellular matrix protein, an integrin ligand, and an angiogenesis inhibitor, other examples of which are all key players in the progression of cardiac hypertrophy. However, its function during cardiac hypertrophy remains unclear. This study was aimed to identify the effect of mindin on cardiac hypertrophy and the underlying mechanisms.
Methods and results
A significant down-regulation of mindin expression was observed in human failing hearts. To further investigate the role of mindin in cardiac hypertrophy, we used cultured neonatal rat cardiomyocytes with gain and loss of mindin function and cardiac-specific Mindin-overexpressing transgenic (TG) mice. In cultured cardiomyocytes, mindin negatively regulated angiotensin II (Ang II)-mediated hypertrophic growth, as detected by [3H]-Leucine incorporation, cardiac myocyte area, and hypertrophic marker protein levels. Cardiac hypertrophy in vivo was produced by aortic banding (AB) or Ang II infusion in TG mice and their wild-type controls. The extent of cardiac hypertrophy was evaluated by echocardiography as well as by pathological and molecular analyses of heart samples. Mindin overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and left ventricular dysfunction in mice in response to AB or Ang II. Further analysis of the signalling events in vitro and in vivo indicated that these beneficial effects of mindin were associated with the interruption of AKT/glycogen synthase kinase 3β (GSK3β) and transforming growth factor (TGF)-β1–Smad signalling.
The present study demonstrates for the first time that mindin serves as a novel mediator that protects against cardiac hypertrophy and the transition to heart failure by blocking AKT/GSK3β and TGF-β1–Smad signalling.
PMCID: PMC3657538  PMID: 21632881
Mindin; Hypertrophy; Remodelling; Signal transduction; AKT
24.  CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data 
Nucleic Acids Research  2012;41(1):e4.
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.
PMCID: PMC3592415  PMID: 22941633
25.  Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010 
BMC Public Health  2012;12:544.
In 2003, Plasmodium vivax malaria has re-emerged in central eastern China including Yongcheng prefecture, Henan Province, where no case has been reported for eleven years. Our goals were to detect the space-time distribution pattern of malaria and to determine significant environmental variables contributing to malaria incidence in Yongcheng from 2006 to 2010, thus providing scientific basis for further optimizing current malaria surveillance and control programs.
This study examined the spatial and temporal heterogeneities in the risk of malaria and the influencing factors on malaria incidence using geographical information system (GIS) and time series analysis. Univariate analysis was conducted to estimate the crude correlations between malaria incidence and environmental variables, such as mosquito abundance and climatic factors. Multivariate analysis was implemented to construct predictive models to explore the principal environmental determinants on malaria epidemic using a Generalized Estimating Equation (GEE) approach.
Annual malaria incidence at town-level decreased from the north to south, and monthly incidence at prefecture-level demonstrated a strong seasonal pattern with a peak from July to November. Yearly malaria incidence had a visual spatial association with yearly average temperature. Moreover, the best-fit temporal model (model 2) (QIC = 16.934, P<0.001, R2 = 0.818) indicated that significant factors contributing to malaria incidence were maximum temperature at one month lag, average humidity at one month lag, and malaria incidence of the previous month.
Findings supported the effects of environment factors on malaria incidence and indicated that malaria control targets should vary with intensity of malaria incidence, with more public resource allocated to control the source of infections instead of large scale An. sinensis control when malaria incidence was at a low level, which would benefit for optimizing the malaria surveillance project in China and some other countries with unstable or low malaria transmission.
PMCID: PMC3488337  PMID: 22823998
Malaria; Anopheles; Weather; Geographic information system; Modeling

Results 1-25 (171)