PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (274)
 

Clipboard (0)
None
Journals
more »
Year of Publication
more »
1.  A comparison of ARMS and direct sequencing for EGFR mutation analysis and Tyrosine Kinase Inhibitors treatment prediction in body fluid samples of Non-Small-Cell Lung Cancer patients 
Background
Epidermal growth factor receptor (EGFR) mutation is strongly associated with the therapeutic effect of tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer (NSCLC). Nevertheless, tumor tissue that needed for mutation analysis is frequently unavailable. Body fluid was considered to be a feasible substitute for the analysis, but arising problems in clinical practice such as relatively lower mutation rate and poor clinical correlation are not yet fully resolved.
Method
In this study, 50 patients (32 pleural fluids and 18 plasmas) with TKIs therapy experience and with direct sequencing results were selected from 220 patients for further analysis. The EGFR mutation status was re-evaluated by Amplification Refractory Mutation System (ARMS), and the clinical outcomes of TKIs were analyzed retrospectively.
Results
As compared with direct sequencing, 16 positive and 23 negative patients were confirmed by ARMS, and the other 11 former negative patients (6 pleural fluids and 5 plasmas) were redefined as positive, with a fairly well clinical outcome (7 PR, 3 SD, and 1 PD). The objective response rate (ORR) of positive patients was significant, 81.3% (direct sequencing) and 72.7% (ARMS) for pleural fluids, and 80% (ARMS) for plasma. Notably, even reclassified by ARMS, the ORR for negative patients was still relatively high, 60% for pleural fluids and 46.2% for plasma.
Conclusions
When using body fluids for EGFR mutation analysis, positive result is consistently a good indicator for TKIs therapy, and the predictive effect was no less than that of tumor tissue, no matter what method was employed. However, even reclassified by ARMS, the correlation between negative results and clinical outcome of TKIs was still unsatisfied. The results indicated that false negative mutation still existed, which may be settled by using method with sensitivity to single DNA molecule or by optimizing the extraction procedure with RNA or CTC to ensure adequate amount of tumor-derived nucleic acid for the test.
doi:10.1186/1756-9966-30-111
PMCID: PMC3287118  PMID: 22142557
Body Fluids; EGFR Mutation; Direct Sequencing; ARMS; TKIs; NSCLC
2.  Mysterious abrupt carbon-14 increase in coral contributed by a comet 
Scientific Reports  2014;4:3728.
A large and sudden increase in radiocarbon (14C) around AD 773 are documented in coral skeletons from the South China Sea. The 14C increased by ~ 15‰ during winter, and remain elevated for more than 4 months, then increased and dropped down within two months, forming a spike of 45‰ high in late spring, followed by two smaller spikes. The 14C anomalies coincide with an historic comet collision with the Earth's atmosphere on 17 January AD 773. Comas are known to have percent-levels of nitrogen by weight, and are exposed to cosmic radiation in space. Hence they may be expected to contain highly elevated 14C/12C ratios, as compared to the Earth's atmosphere. The significant input of 14C by comets may have contributed to the fluctuation of 14C in the atmosphere throughout the Earth's history, which should be considered carefully to better constrain the cosmic ray fluctuation.
doi:10.1038/srep03728
PMCID: PMC3893640  PMID: 24430984
3.  The Use of Integrative Therapies in Patients with Amyotrophic Lateral Sclerosis in Shanghai, China 
Objective. To investigate the current use of integrative therapies (IT) in the treatment of patients with amyotrophic lateral sclerosis (ALS). Methods. A cross-sectional, multicenter clinical epidemiological survey was conducted in 12 hospitals in Shanghai. We investigated the type and frequency of IT use and determined whether the use of IT correlated with demographic, social, or disease-specific characteristics in our patient population. Results. A total of 231 (89.5%) of 258 patients with ALS were eligible for the study and 229 (99% of all) of 231 reported the use of at least one IT for the treatment of ALS. Vitamins and Chinese herb decoctions, Chinese herb compounds, massage therapy, and acupuncture were the 5 most commonly used therapies. There was a strong association between education level, income, and use of IT. A household income of more than 75,000 RMB ($49,995) correlated with multiple IT use, and married patients used IT more often than single individuals. The main reasons for using IT were to treat weakness and fatigue, muscle atrophy, the development of ALS, depression, insomnia, limb pain or numbness, and side effects associated with Riluzole. Conclusion. The use of IT is common in patients with ALS in Shanghai. Vitamins and TCM are the most used additional therapies and the widespread and largely unexamined use of IT for ALS requires more attention.
doi:10.1155/2013/613596
PMCID: PMC3865630  PMID: 24363770
4.  Circulating tumor cells in HER2-positive metastatic breast cancer patients: a valuable prognostic and predictive biomarker 
BMC Cancer  2013;13:202.
Background
This study was initiated to investigate the prognostic significance of circulating tumor cell (CTC) enumeration and the predictive value of CTC HER2 expression for efficient anti-HER2 therapy in HER2-positive metastatic breast cancer (MBC) patients.
Methods
Sixty HER2-positive MBC patients were enrolled in the present study. Before the initiation of systemic treatment, CTCs from 7.5 ml of blood were analyzed using the CellSearch system. The progression-free survival (PFS) of the patients was estimated using Kaplan-Meier survival curves.
Results
CTCs were detected in 45% (27/60) of the patients, who had shorter median PFS than those without CTCs (2.5 vs. 7.5 months, P = 0.0125). Furthermore, referring to the standard HER2 testing that uses immunohistochemistry (IHC), we proposed a CTC HER2-positive criterion, defined as >30% of CTCs over-expressing HER2. Among patients undergoing anti-HER2 therapy, those with HER2-positive CTCs had longer PFS (8.8 vs. 2.5 months, P = 0.002). Among patients with HER2-positive CTCs, the median PFS for those receiving anti-HER2 therapy was significantly longer than those who were not (8.8 vs. 1.5 months, P = 0.001). Notably, up to 52% (14/27) of the HER2-positive patients were CTC HER2-negative, and anti-HER2 therapy did not significantly improve the median PFS in these patients (2.5 vs. 0.9 months, P = 0.499).
Conclusions
Our findings underscore the necessity of a comprehensive CTC analysis, which may provide valuable prognostic and predictive information for optimizing individually tailored therapies in HER2-positive MBC patients. To test this idea, additional large cohort, multi-center and prospective clinical trials are needed.
doi:10.1186/1471-2407-13-202
PMCID: PMC3643882  PMID: 23617715
6.  Role of Macrophage Migration Inhibitory Factor in the Proliferation of Smooth Muscle Cell in Pulmonary Hypertension 
Mediators of Inflammation  2012;2012:840737.
Pulmonary hypertension (PH) contributes to the mortality of patients with lung and heart diseases. However, the underlying mechanism has not been completely elucidated. Accumulating evidence suggests that inflammatory response may be involved in the pathogenesis of PH. Macrophage migration inhibitory factor (MIF) is a critical upstream inflammatory mediator which promotes a broad range of pathophysiological processes. The aim of the study was to investigate the role of MIF in the pulmonary vascular remodeling of hypoxia-induced PH. We found that MIF mRNA and protein expression was increased in the lung tissues from hypoxic pulmonary hypertensive rats. Intensive immunoreactivity for MIF was observed in smooth muscle cells of large pulmonary arteries (PAs), endothelial cells of small PAs, and inflammatory cells of hypoxic lungs. MIF participated in the hypoxia-induced PASMCs proliferation, and it could directly stimulate proliferation of these cells. MIF-induced enhanced growth of PASMCs was attenuated by MEK and JNK inhibitor. Besides, MIF antagonist ISO-1 suppressed the ERK1/2 and JNK phosphorylation induced by MIF. In conclusion, the current finding suggested that MIF may act on the proliferation of PASMCs through the activation of the ERK1/2 and JNK pathways, which contributes to hypoxic pulmonary hypertension.
doi:10.1155/2012/840737
PMCID: PMC3270469  PMID: 22363104
7.  Clathrin-Mediated Endocytosis in Living Host Cells Visualized through Quantum Dot Labeling of Infectious Hematopoietic Necrosis Virus▿† 
Journal of Virology  2011;85(13):6252-6262.
Infectious hematopoietic necrosis virus (IHNV) is an important fish pathogen that infects both wild and cultured salmonids. As a species of the genus Novirhabdovirus, IHNV is a valuable model system for exploring the host entry mechanisms of rhabdoviruses. In this study, quantum dots (QDs) were used as fluorescent labels for sensitive, long-term tracking of IHNV entry. Using live-cell fluorescence microscopy, we found that IHNV is internalized through clathrin-coated pits after the virus binds to host cell membranes. Pretreatment of host cells with chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and clathrin light chain (LCa) depletion using RNA interference both resulted in a marked reduction in viral entry. We also visualized transport of the virus via the cytoskeleton (i.e., actin filaments and microtubules) in real time. Actin polymerization is involved in the transport of endocytic vesicles into the cytosol, whereas microtubules are required for the trafficking of clathrin-coated vesicles to early endosomes, late endosomes, and lysosomes. Disrupting the host cell cytoskeleton with cytochalasin D or nocodazole significantly impaired IHNV infectivity. Furthermore, infection was significantly affected by pretreating the host cells with bafilomycin A1, a compound that inhibits the acidification of endosomes and lysosomes. Strong colocalizations of IHNV with endosomes indicated that the virus is internalized into these membrane-bound compartments. This is the first report in which QD labeling is used to visualize the dynamic interactions between viruses and endocytic structures; the results presented demonstrate that IHNV enters host cells via clathrin-mediated endocytic, cytoskeleton-dependent, and low-pH-dependent pathways.
doi:10.1128/JVI.00109-11
PMCID: PMC3126507  PMID: 21525360
8.  Regulation of G1 Arrest and Apoptosis in Hypoxia by PERK and GCN2-Mediated eIF2α Phosphorylation12 
Neoplasia (New York, N.Y.)  2010;12(1):61-68.
Hypoxia is a common microenvironment in solid tumors and is correlated with tumor progression by regulating cancer cell survival. Recent studies suggest that activation of double-stranded RNA-dependent protein kinase-like endoplasmic reticulum-related kinase (PERK) and phosphorylation of α subunit of eIF2 (eIF2α) confer cell adaptation to hypoxic stress. However, eIF2α is still phosphorylated at a lowered level in PERK knockout cells under hypoxic conditions. The mechanism for eIF2α kinase(s) (eIF2AK)-increased cell survival is not clear. In this report, we provide evidence that another eIF2AK, the amino acid starvation-dependent general control of amino acid biosynthesis kinase (GCN2), is also involved in hypoxia-induced eIF2α phosphorylation. We demonstrate that both GCN2 and PERK mediate the cell adaptation to hypoxic stress. High levels of eIF2α phosphorylation lead to G1 arrest and protect cells from hypoxia-induced apoptosis. Reduced phosphorylation of eIF2α by knocking out either PERK or GCN2 suppresses hypoxia-induced G1 arrest and promotes apoptosis in accompany with activation of p53 signal cascade. However, totally abolishing phosphorylation of eIF2α inhibits G1 arrest without promoting apoptosis. On the basis of our results, we propose that the levels of eIF2α phosphorylation serve as a “switch” in regulation of G1 arrest or apoptosis under hypoxic conditions.
PMCID: PMC2805884  PMID: 20072654
9.  Application of air insufflation to prevent clinical pancreatic fistula after pancreaticoduodenectomy 
AIM: To introduce an air insufflation procedure and to investigate the effectiveness of air insufflation in preventing pancreatic fistula (PF).
METHODS: From March 2010 to August 2013, a total of 185 patients underwent pancreaticoduodenectomy (PD) at our institution, and 74 patients were not involved in this study for various reasons. The clinical outcomes of 111 patients were retrospectively analyzed. The air insufflation test was performed in 46 patients to investigate the efficacy of the pancreaticojejunal anastomosis during surgery, and 65 patients who did not receive the air insufflation test served as controls. Preoperative assessments and intraoperative outcomes were compared between the 2 groups. Univariate and multivariate analyses were performed to identify the risk factors for PF.
RESULTS: The two patient groups had similar baseline demographics, preoperative assessments, operative factors, pancreatic factors and pathological results. The overall mortality, morbidity, and PF rates were 1.8%, 48.6%, and 26.1%, respectively. No significant differences were observed in either morbidity or mortality between the two groups. The rate of clinical PF (grade B and grade C PF) was significantly lower in the air insufflation test group, compared with the non-air insufflation test group (6.5% vs 23.1%, P = 0.02). Univariate analysis identified the following parameters as risk factors related to clinical PF: estimated blood loss; pancreatic duct diameter ≤ 3 mm; invagination anastomosis technique; and not undergoing air insufflation test. By further analyzing these variables with multivariate logistic regression, estimated blood loss, pancreatic duct diameter ≤ 3 mm and not undergoing air insufflation test were demonstrated to be independent risk factors.
CONCLUSION: Performing an air insufflation test could significantly reduce the occurrence of clinical PF after PD. Not performing an air insufflation test was an independent risk factor for clinical PF.
doi:10.3748/wjg.v21.i6.1872
PMCID: PMC4323465
Pancreatic fistula; Pancreaticoduodenectomy; Air insufflation test; Surgery; Morbidity
10.  Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice 
Cardiovascular Research  2013;101(1):87-96.
Aims
Toll-interacting protein (Tollip) is a critical regulator of the Toll-like receptor-mediated signalling pathway. However, the role of Tollip in chronic pressure overload-induced cardiac hypertrophy remains unclear. This study aimed to determine the functional significance of Tollip in the regulation of aortic banding-induced cardiac remodelling and its underlying mechanisms.
Methods and results
First, we observed that Tollip was down-regulated in human failing hearts and murine hypertrophic hearts, as determined by western blotting and RT–PCR. Using cultured neonatal rat cardiomyocytes, we found that adenovirus vector-mediated overexpression of Tollip limited angiotensin II-induced cell hypertrophy; whereas knockdown of Tollip by shRNA exhibited the opposite effects. We then generated a transgenic (TG) mouse model with cardiac specific-overexpression of Tollip and subjected them to aortic banding (AB) for 8 weeks. When compared with AB-treated wild-type mouse hearts, Tollip-TGs showed a significant attenuation of cardiac hypertrophy, fibrosis, and dysfunction, as measured by echocardiography, immune-staining, and molecular/biochemical analysis. Conversely, a global Tollip-knockout mouse model revealed an aggravated cardiac hypertrophy and accelerated maladaptation to chronic pressure overloading. Mechanistically, we discovered that Tollip interacted with AKT and suppressed its downstream signalling pathway. Pre-activation of AKT in cardiomyocytes largely offset the Tollip-elicited anti-hypertrophic effects.
Conclusion
Our results provide the first evidence that Tollip serves as a negative regulator of pathological cardiac hypertrophy by blocking the AKT signalling pathway.
doi:10.1093/cvr/cvt232
PMCID: PMC3968303  PMID: 24285748
Tollip; Cardiac remodelling; Pressure overload; AKT; Cardiomyocyte hypertrophy
11.  Expression of VEGFR2 and NRP-1 in non-small cell lung cancer and their clinical significance 
Objective
Vascular-targeted therapy is gradually becoming more appealing for patients with lung cancer. It is unclear whether vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) can be biomarkers for clinical treatment. We aimed to investigate the expression levels of VEGFR2 and NRP-1 in human non-small cell lung cancer (NSCLC) and their clinical significance by observing patient prognosis.
Methods
VEGFR2 and NRP-1 were assessed by immunohistochemistry (IHC) in 40 patients with NSCLC and in 10 patients with benign lesions of lung; kinase insert domain receptor (KDR) and NRP-1 copy number gain (CNG) was assessed by fluorescence in situ hybridization (FISH). The distributions of overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method and compared between groups by log-rank test.
Results
Rates of positive immunostaining for VEGFR2 and NRP-1 were 58% and 55%, respectively. KDR and NRP-1 CNG (+) were detected in 32.5% and 30% of tumors, respectively. Levels of both VEGFR2 and NRP-1 in lung tumors were significantly different than in the control tissue (χ2=11.22, P=0.001; χ2=9.82, P=0.001, respectively); similar results were obtained using CNGs (χ2=4.39, P=0.036; χ2=3.95, P=0.046, respectively). Statistically significant correlations were observed with histological grade, clinical TNM stage and the lymph node status (P<0.05), but not age, gender or pathology type (P>0.05). VEGFR2 showed a strong correlation with NRP-1 (Rs=0.68, P=0.00); similar results were observed with KDR and NRP-1 CNG (Rs=0.32, P=0.04). Significant differences in OS and PFS were observed between the groups with higher VEGFR2 and NRP-1 and those with lower expression (P<0.05).
Conclusions
According to these data, VEGFR2 and NRP-1 are highly expressed in NSCLC. We can conclude that they play a key role in NSCLC occurrence, development and metastasis and are associated with patient prognosis (P<0.05 for OS and PFS). This information will be beneficial for clinical anti-angiogenic treatment in NSCLC.
doi:10.3978/j.issn.1000-9604.2014.12.04
PMCID: PMC4279211  PMID: 25561764
Non-small cell lung cancer (NSCLC); vascular endothelial growth factor receptor 2 (VEGFR2); neuropilin-1 (NRP-1); fluorescence in situ hybridization (FISH)
12.  UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer 
Scientific Reports  2014;4:6910.
Cyclins are essential for cell proliferation, the cell cycle and tumorigenesis in all eukaryotes. UbcH10 regulates the degradation of cyclins in a ubiquitin-dependent manner. Here, we report that UbcH10 is likely involved in tumorigenesis. We found that cancer cells exposed to n-acetyl-leu-leu-norleucinal (ALLN) treatment and UbcH10 depletion exhibit a synergistic therapeutic effect. Abundant expression of UbcH10 drives resistance to ALLN-induced cell death, while cells deficient in UbcH10 were susceptible to ALLN-induced cell death. The depletion of UbcH10 hindered tumorigenesis both in vitro and in vivo, as assessed by colony formation, growth curve, soft agar and xenograft assays. These phenotypes were efficiently rescued through the introduction of recombinant UbcH10. In the UbcH10-deficient cells, alterations in the expression of cyclins led to cell cycle changes and subsequently decreases in tumorigenesis. The tumorigenesis of xenograft tumors from UbcH10-deficient cells treated with ALLN was decreased relative to wild-type cells treated with ALLN in nude mice. On the molecular level, we observed that UbcH10 deficiency enhances the activation of caspase 8 and caspase 3 but not caspase 9 to impair cell viability upon ALLN treatment. Collectively, our results suggest that, as an oncogene, UbcH10 is a potential drug target for the treatment of colorectal cancer.
doi:10.1038/srep06910
PMCID: PMC4223683  PMID: 25376843
13.  Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution 
Neuraminidase inhibitors (NAIs) are the only available licensed therapeutics against human H7N9 influenza virus infections. The emergence of NAI-resistant variants of H7N9viruses with an NA R292K mutation poses a therapeutic challenge. A comprehensive understanding of the susceptibility of these viruses to clinically available NAIs, non-NAIs and their combinations is crucial for effective treatment. In this study, by using limited serial passage and plaque purification, an R292K variant of the Anhui1 lineage was isolated from a patient with clinical evidence of resistance to oseltamivir. In vitro and cell-based assays confirmed a high level of resistance conferred by the R292K mutation to oseltamivir carboxylate and a moderate level of resistance to zanamivir and peramivir. Non-NAI antivirals, such as T-705, ribavirin and NT-300, efficiently inhibited both the variant and the wild-type in cell-based assays. A combination of NAIs and non-NAIs did not exhibit a marked synergistic effect against the R292K variant. However, the combination of two non-NAIs (T-705 and ribavirin) exhibited significant synergism against the mutant virus. In experimentally infected mice, the variant showed delayed onset of symptoms, a reduced viral load and attenuated lethality compared with the wild-type. Our study suggested non-NAIs should be tested clinically for H7N9 patients with a sustained high viral load. Possible drug combination regimens, such as T-705 plus ribavirin, should be further tested in animal models. The pathogenicity and transmissibility of the R292K H7N9 variant should be further assessed with genetically well-characterized pairs of viruses and, most-desirably, with competitive fitness experiments.
doi:10.1038/emi.2014.80
PMCID: PMC4274890
H7N9; influenza virus; neuraminidase; oseltamivir; peramivir
14.  miRNA-124 down-regulates SOX8 expression and suppresses cell proliferation in non-small cell lung cancer 
Non-small lung cell carcinoma (NSCLC) is a leading lethal disease and a global health burden. The function of the Sex determining region Y (SRY)-related high mobility group box (SOX) family gene in cancer has attracted the attention of more and more scientists recently, yet there are few reports regarding the role of SOX in NSCLC. Our study aimed to investigate the expression of SOX8, a protein belonging to the E group of the SOX family, as well as SOX9, in non-small cell lung cancer (NSCLC) and the relationship of gene expression to clinicopathological factors and prognosis in patients. Immunohistochemical analysis was used to measure the expression of SOX8 in 80 NSCLC and 7 adjacent normal tissues. SOX8 expression was detected as elevated in tumor samples and correlated to tumor size (P < 0.001), lymph node metastasis (P = 0.001), differentiation classification (P = 0.015), and clinical stage (P = 0.013) significantly. Moreover, Kaplan-Meier survival analysis demonstrated that shorter survival time for patients who had higher SOX8 expression (P < 0.001). In addition, our experiments indicate that miRNA-124 functions as a tumor suppressor in NSCLC. We also demonstrate miRNA-124 directly targeted and decreased SOX8 in NSCLC cell lines, suggesting smiRNA-124 may regulate NSCLC cell proliferation via decreasing SOX8 (oncogenicity of biomarker in NSCLC).
PMCID: PMC4270566  PMID: 25550787
NSCLC; miRNA-124; Sox8; IHC; lung cancer; survival analysis; cell proliferation
15.  Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias 
Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies.
doi:10.1111/jcmm.12335
PMCID: PMC4244014  PMID: 25092467
ischaemic cardiac arrhythmias; dynamin-2; ion channels; Nav1.5; Kir2.1
16.  Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation 
Background
Mitogen-activated protein kinase (MAPK) signaling pathways are implicated in inflammatory and apoptotic processes of cerebral ischemia and reperfusion (I/R) injury. Hence, MAPK pathways represent a promising therapeutic target. Exploring the full potential of inhibitors of MAPK pathways is a useful therapeutic strategy for ischemic stroke. Bilobalide, a predominant sesquiterpene trilactone constituent of Ginkgo biloba leaves, has been shown to exert powerful neuroprotective properties, which are closely related to both anti-inflammatory and anti-apoptotic pathways. We investigated the neuroprotective roles of bilobalide in the models of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reoxygenation (OGD/R) of cerebral I/R injury. Moreover, we attempted to confirm the hypothesis that its protection effect is via modulation of pro-inflammatory mediators and MAPK pathways.
Methods
Male Sprague-Dawley rats were subjected to MCAO for 2 h followed by reperfusion for 24 h. Bilobalide was administered intraperitoneally 60 min before induction of middle cerebral artery occlusion (MCAO). After reperfusion, neurological deficit scores, infarct volume, infarct weight, and brain edema were assessed. Ischemic penumbrae of the cerebral cortex were harvested to determine superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide, TNF-α, interleukin 1β (IL-1β), p-ERK1/2, p-JNK1/2, and p-p38 MAPK concentration. Similarly, the influence of bilobalide on the expression of nitric oxide, TNF-α, IL-1β, p-ERK1/2, p-JNK1/2, and p-p38 MAPK was also observed in an OGD/R in vitro model of I/R injury.
Results
Pretreatment with bilobalide (5, 10 mg/kg) significantly decreased neurological deficit scores, infarct volume, infarct weight, brain edema, and concentrations of MDA, nitric oxide, TNF-α, IL-1β, and increased SOD activity. Furthermore, bilobalide (5, 10 mg/kg) pretreatment significantly down-regulated both p-JNK1/2 and p-p38 MAPK expression, whereas they had no effect on p-ERK1/2 expression in the ischemic penumbra. Supporting these observations in vivo, pretreatment with bilobalide (50, 100 μM) significantly down-regulated nitric oxide, TNF-α, IL-1β, p-JNK1/2, and p-p38 MAPK expression, but did not change p-ERK1/2 expression in rat cortical neurons after OGD/R injury.
Conclusions
These data indicate that the neuroprotective effects of bilobalide on cerebral I/R injury are associated with its inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation.
doi:10.1186/s12974-014-0167-6
PMCID: PMC4189683  PMID: 25256700
bilobalide; cerebral ischemia and reperfusion; p-ERK1/2; p-JNK1/2; p-p38 MAPK; pro-inflammatory mediators
17.  miRNA-124 down-regulates SOX8 expression and suppresses cell proliferation in non-small cell lung cancer 
Non-small lung cell carcinoma (NSCLC) is a leading lethal disease and a global health burden. The function of the Sex determining region Y (SRY)-related high mobility group box (SOX) family gene in cancer has attracted the attention of more and more scientists recently, yet there are few reports regarding the role of SOX in NSCLC. Our study aimed to investigate the expression of SOX8, a protein belonging to the E group of the SOX family, as well as SOX9, in non-small cell lung cancer (NSCLC) and the relationship of gene expression to clinicopathological factors and prognosis in patients. Immunohistochemical analysis was used to measure the expression of SOX8 in 80 NSCLC and 7 adjacent normal tissues. SOX8 expression was detected as elevated in tumor samples and correlated to tumor size (P < 0.001), lymph node metastasis (P = 0.001), differentiation classification (P = 0.015), and clinical stage (P = 0.013) significantly. Moreover, Kaplan-Meier survival analysis demonstrated that shorter survival time for patients who had higher SOX8 expression (P < 0.001). In addition, our experiments indicate that miRNA-124 functions as a tumor suppressor in NSCLC. We also demonstrate miRNA-124 directly targeted and decreased SOX8 in NSCLC cell lines, suggesting smiRNA-124 may regulate NSCLC cell proliferation via decreasing SOX8 (oncogenicity of biomarker in NSCLC).
PMCID: PMC4230110  PMID: 25400731
NSCLC; miRNA-124; Sox8; IHC; lung cancer; survival analysis; cell proliferation
18.  miRNA-940 reduction contributes to human Tetralogy of Fallot development 
Tetralogy of Fallot (TOF) is a complex congenital heart defect and the microRNAs regulation in TOF development is largely unknown. Herein, we explored the role of miRNAs in TOF. Among 75 dysregulated miRNAs identified from human heart tissues, miRNA-940 was the most down-regulated one. Interestingly, miRNA-940 was most highly expressed in normal human right ventricular out-flow tract comparing to other heart chambers. As TOF is caused by altered proliferation, migration and/or differentiation of the progenitor cells of the secondary heart field, we isolated Sca-1+ human cardiomyocyte progenitor cells (hCMPC) for miRNA-940 function analysis. miRNA-940 reduction significantly promoted hCMPCs proliferation and inhibited hCMPCs migration. We found that JARID2 is an endogenous target regulated by miRNA-940. Functional analyses showed that JARID2 also affected hCMPCs proliferation and migration. Thus, decreased miRNA-940 affects the proliferation and migration of the progenitor cells of the secondary heart field by targeting JARID2 and potentially leads to TOF development.
doi:10.1111/jcmm.12309
PMCID: PMC4196658  PMID: 24889693
Tetralogy of Fallot; microRNA; human cardiomyocyte progenitor cell
19.  Association between a Variant in MicroRNA-646 and the Susceptibility to Hepatocellular Carcinoma in a Large-Scale Population 
The Scientific World Journal  2014;2014:312704.
Background. Single-nucleotide polymorphisms in microRNAs play important roles in oncogenesis and cancer development. Objective. We aim to explore whether miR-646 rs6513497 is associated with the risk of hepatocellular carcinoma. Methods. Total 997 HCC patients and 993 cancer-free controls were enrolled in this study. Genotyping was performed using MassARRAY method. Results. Compared with the T allele of rs6513497, the G allele was associated with a significantly decreased risk of HCC (OR = 0.788, 95% CI = 0.631–0.985, P = 0.037); moreover, a more protective effect of the G allele was shown in males (OR = 0.695, 95% CI = 0.539–0.897, P = 0.005 in HCC and OR = 0.739, 95% CI = 0.562–0.972, P = 0.030 in HBV-related HCC), basically in a dominant manner (HCC: OR = 0.681, 95% CI = 0.162–0.896, P = 0.006; HBV-related HCC: OR = 0.715, 95% CI = 0.532–0.962, P = 0.027). Conclusions. Our findings support the view that the miR-646 SNP rs6513497 may contribute to the susceptibility of HCC.
doi:10.1155/2014/312704
PMCID: PMC4142315  PMID: 25177719
20.  pH-Dependent Activation of Streptomyces hygroscopicus Transglutaminase Mediated by Intein 
Microbial transglutaminase (MTG) from Streptomyces is naturally secreted as a zymogen (pro-MTG), which is then activated by the removal of its N-terminal proregion by additional proteases. Inteins are protein-intervening sequences that catalyze protein splicing without cofactors. In this study, a pH-dependent Synechocystis sp. strain PCC6803 DnaB mini-intein (SDB) was introduced into pro-MTG to simplify its activation process by controlling pH. The recombinant protein (pro-SDB-MTG) was obtained, and the activation process was determined to take 24 h at pH 7 in vitro. To investigate the effect of the first residue in MTG on the activity and the cleavage time, two variants, pro-SDB-MTG(D1S) and pro-SDB-MTG(ΔD1), were expressed, and the activation time was found to be 6 h and 30 h, respectively. The enzymatic property and secondary structure of the recombinant MTG and two variants were similar to those of the wild type, indicating that the insertion of mini-intein did not affect the function of MTG. This insignificant effect was further illustrated by molecular dynamics simulations. This study revealed a controllable and effective strategy to regulate the activation process of pro-MTG mediated by a mini-intein, and it may have great potential for industrial MTG production.
doi:10.1128/AEM.02820-13
PMCID: PMC3911110  PMID: 24242235
21.  Exploration of Type II Binding Mode: A Privileged Approach for Kinase Inhibitor Focused Drug Discovery? 
ACS Chemical Biology  2014;9(6):1230-1241.
The ATP site of kinases displays remarkable conformational flexibility when accommodating chemically diverse small molecule inhibitors. The so-called activation segment, whose conformation controls catalytic activity and access to the substrate binding pocket, can undergo a large conformational change with the active state assuming a ‘DFG-in’ and an inactive state assuming a ‘DFG-out’ conformation. Compounds that preferentially bind to the DFG-out conformation are typically called ‘type II’ inhibitors in contrast to ‘type I’ inhibitors that bind to the DFG-in conformation. This review surveys the large number of type II inhibitors that have been developed and provides an analysis of their crystallographically determined binding modes. Using a small library of type II inhibitors, we demonstrate that more than 200 kinases can be targeted, suggesting that type II inhibitors may not be intrinsically more selective than type I inhibitors.
doi:10.1021/cb500129t
PMCID: PMC4068218  PMID: 24730530
22.  Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine 
Stem Cells and Development  2013;22(12):1752-1762.
Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model.
doi:10.1089/scd.2012.0688
PMCID: PMC3668499  PMID: 23363023
23.  Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2 
Scientific Reports  2014;4:5148.
Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem.
doi:10.1038/srep05148
PMCID: PMC4042124  PMID: 24888785
24.  Spatial Distribution of Wall Shear Stress in Common Carotid Artery by Color Doppler Flow Imaging 
Journal of Digital Imaging  2012;26(3):466-471.
The purpose of this study is to provide a novel approach for measuring the spatial distribution of wall shear stress (WSS) in common carotid artery in vivo. WSS distributions were determined by digital image processing from color Doppler flow imaging (CDFI) in 50 healthy volunteers. In order to evaluate the feasibility of the spatial distribution, the mean values of WSS distribution were compared to the results of conventional WSS calculating method (Hagen–Poiseuille formula). In our study, the mean value of WSS distribution from 50 healthy volunteers was (6.91 ± 1.20) dyne/cm2, while it was (7.13 ± 1.24) dyne/cm2 by Hagen–Poiseuille approach. The difference was not statistically significant (t = −0.864, p = 0.604). Hence, the feasibility of the spatial distribution of WSS was proved. Moreover, this novel approach could provide three-dimensional distribution of shear stress and fusion image of shear stress with ultrasonic image for each volunteer, which made WSS “visible”. In conclusion, the spatial distribution of WSS could be used for WSS calculation in vivo. Moreover, it could provide more detailed values of WSS distribution than those of Hagen–Poiseuille formula.
Electronic supplementary material
The online version of this article (doi:10.1007/s10278-012-9505-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s10278-012-9505-3
PMCID: PMC3649053  PMID: 22832893
Atherosclerosis; Common carotid artery; Wall shear stress; Color Doppler flow imaging; DICOM
25.  Transcutaneous electrical nerve stimulation in the treatment of patients with poststroke urinary incontinence 
Purpose
To investigate the therapeutic effect of transcutaneous electrical nerve stimulation (TENS) on poststroke urinary incontinence (UI).
Patients and methods
Sixty-one patients with poststroke UI were enrolled at the Neurology Department in the Shanghai Tenth People’s Hospital of Tongji University between January 2010–January 2011 and were divided into treatment and control groups (n=32 and n=29, respectively). TENS was applied to the treatment group, while the control group received basic therapy. The therapeutic group completed the whole set of TENS therapy with a treatment frequency of 30 minutes once a day for 60 days. The positive electrode was placed on the second lumbar spinous process, and the negative electrodes were inside the middle and lower third of the junction between the posterior superior iliac spine and ischia node. The overactive bladder symptom score, Barthel Index, and urodynamics examination were estimated before and after therapy in both groups.
Results
The daily micturition, nocturia, urgent urination, and urge UI in the treatment group significantly improved compared to the control group (P<0.05). The patients in the treatment group were superior in the self-care ability of daily living and also had an advantage over the indexes on maximum cystometry volume, flow rate, and the pressure of detrusor in the end of the filling phase.
Conclusion
TENS improved incontinence symptoms, enhanced the quality of life, and decreased adverse effects; hence, it is recommended in treating poststroke UI.
doi:10.2147/CIA.S61084
PMCID: PMC4041286  PMID: 24904204
stroke; urinary incontinence; OABSS; Barthel Index; urodynamics; transcutaneous electrical nerve stimulation

Results 1-25 (274)