PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (98)
 

Clipboard (0)
None
Journals
more »
Year of Publication
more »
Document Types
1.  TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice 
The Journal of Clinical Investigation  2012;122(6):2195-2207.
Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3–/– mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3–/– mice but not Tlr7–/– mice. Consequently, central sensitization–driven pain hypersensitivity, but not acute pain, was impaired in Tlr3–/– mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3–/– mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment.
doi:10.1172/JCI45414
PMCID: PMC3366391  PMID: 22565312
2.  Association between Metabolic Syndrome and Chronic Kidney Disease in Perimenopausal Women 
The purpose of the study was to explore the association between metabolic syndrome (MetS) and chronic kidney disease (CKD) in perimenopausal women. A cross-sectional study was conducted in Zhuhai from June to October 2012. Perimenopausal women (n = 685) were included in the study. All participants were divided into three subgroups: Group 1, 40 years old ≤ Age < 50 years old; Group 2, 50 years old ≤ Age < 60 years old; Group 3, 60 years old ≤ Age ≤ 65 years old. MetS was associated with CKD (p < 0.01) in the unadjusted analyses in total subjects. After adjusting the potential confounders, the odd ratios of CKD for MetS was 2.66 (95% CI 1.56 to 4.49, p < 0.001). There was no relationship between MetS and CKD in both Group 1 and Group 3. MetS was associated with CKD (p < 0.001) in the unadjusted analyses in Group 2. After adjusting for potential confounders, MetS was significantly associated with CKD. The odd ratios for MetS was 6.79 (95% CI 2.30 to 20.09, p < 0.001). There was no relationship between elevated blood pressure, elevated fasting glucose, abdominal obesity, Low HDL cholesterol, elevated triglycerides and CKD in both Group 1 and Group 3. Elevated blood pressure was associated with CKD in Group 2 (unadjusted Odds ratio: 4.52 (1.28–16.02), p = 0.02). After adjusting for potential confounders, there was no relationship between elevated blood pressure and CKD (p = 0.78). Elevated fasting glucose was associated with CKD in Group 2 (unadjusted Odds ratio: 3.69 (1.10–12.38), p = 0.03). After adjusting for potential confounders, there was no relationship between elevated fasting glucose and CKD (p = 0.15). There was no relationship between abdominal obesity, Low HDL cholesterol, elevated triglycerides and CKD in Group 2. These findings suggest that in perimenopausal women aged from 50 or older to 60 MetS was associated with CKD. There is no relationship between MetS and CKD in perimenopausal women aged from 40 or older to 50 and aged from 60 or older to 65.
doi:10.3390/ijerph10093987
PMCID: PMC3799514  PMID: 23999547
metabolic syndrome; chronic kidney disease; perimenopausal women
3.  Hypertriglyceridemic Waist Phenotype and Chronic Kidney Disease in a Chinese Population Aged 40 Years and Older 
PLoS ONE  2014;9(3):e92322.
Objective
To examine the relationship between the HW phenotype and risk for CKD in a community population aged 40 years and older.
Methods
A cross-sectional study was conducted in Zhuhai from June to October 2012. The participants were divided into three groups: Group 1, Waist circumference >90 cm in men or >85 cm in women and triglycerides ≥2 mmol/l; Group 3, Waist circumference ≤90 cm in men or ≤85 cm in women and triglycerides <2 mmol/l; Group 2, The remaining participants. The prevalence of the three subgroups and CKD were determined. The association between HW phenotype and CKD was then analyzed using SPSS (version 13.0).
Results
After adjusting for age and sex, Group 1 was associated with CKD (OR 3.08, 95% CI 2.01, 4.73, P<0.001), when compared with Group 3. Further adjustment for factors which were potential confounders and unlikely to be in the causal pathway between the HW phenotype and CKD, Group 1 was still significantly associated with CKD. The OR for CKD was 2.65 (95% CI 1.65, 4.26, P<0.001). When adjusted for diabetes and hypertension, the association of Group 1 and CKD was still significant (OR 2.09, 95% CI 1.26, 3.45, P = 0.004). Group 2 was associated with CKD (OR 1.81, 95% CI 1.29, 2.53, P = 0.001), when compared with Group 3. Further adjustment for factors which were potential confounders, Group 2 was still significantly associated with CKD. The OR for CKD was 1.75 (95% CI 1.22, 2.51, P = 0.002). When adjusted for diabetes and hypertension, the association between Group 2 and CKD still existed. The OR for CKD was 1.48 (95% CI 1.01, 2.16, P = 0.046).
Conclusion
Our results showed that HW phenotype was associated with CKD in the population aged 40 years and older.
doi:10.1371/journal.pone.0092322
PMCID: PMC3963886  PMID: 24663403
4.  Intelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles 
PLoS ONE  2013;8(7):e69643.
Aims
The matrix metalloproteinase (MMP) 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs) ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL) by inserting a gelatinase cleavable peptide (PVGLIG) between mPEG and PCL blocks of mPEG-PCL for anticancer drug delivery to make use of MMP2/9 as an intelligent target for drug delivery.
Materials and Methods
mPEG-pep-PCL copolymer was synthesized via ring-opening copolymerization and double-amidation. To evaluate whether Nanoparticles (NPs) prepared from this copolymer are superior to NPs prepared from mPEG-PCL, NPs prepared from mPEG-PCL copolymer were used as positive control. Docetaxel-loading NPs using mPEG-pep-PCL and mPEG-PCL were prepared by nano-precipitation method, mentioned as Gel-NPs and Con-NPs, respectively. The morphologic changes of the NPs after treatment with gelatinases were observed macroscopically by spectrophotometer and microscopically by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The cellular uptake amount and cytotoxicity of Gel-NPs and Con-NPs, respectively, in cell lines with different levels of gelatinase expression were studied. Moreover, the cytotoxicity study on the primary cancer cells isolated from pericardial fluids from a patient with late-stage lung cancer was conducted.
Results
The Gel-NPs aggregated in response to gelatinases, which was confirmed macroscopically and microscopically. The cellular uptake amount of Gel-NPs was correlated with the level of gelatinases. The in vitro antitumor effect of Gel-NPs was also correlated with the level of gelatinases and was superior to Taxotere (commercially available docetaxel) as well as the Con-NPs. The cytotoxicity study on the primary lung cancer cells also confirmed the effectiveness of Gel-NPs.
Conclusion
The results in this study preliminarily demonstrated the effectiveness of gelatinase-responsive targeting strategy and the prospect of this intelligent nano-drug delivery system though further studies are needed.
doi:10.1371/journal.pone.0069643
PMCID: PMC3728361  PMID: 23936062
5.  Lentiviral Transgenic MicroRNA-Based shRNA Suppressed Mouse Cytochromosome P450 3A (CYP3A) Expression in a Dose-Dependent and Inheritable Manner 
PLoS ONE  2012;7(1):e30560.
Cytochomosome P450 enzymes (CYP) are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA) simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44), and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01). This work laid down a foundation to further knock down the remaining murine CYP3As or CYPs of other subfamilies, and a basis to generate CYP knockdown animals of other species.
doi:10.1371/journal.pone.0030560
PMCID: PMC3265487  PMID: 22291988
6.  Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ɛ-caprolactone) nanoparticles 
Nanoscale drug carriers have been extensively developed to improve drug therapeutic efficiency. However, delivery of chemotherapeutic agents to tumor tissues and cells has not been favorably managed. In this study, we developed a novel “intelligent” nanoparticle, consisting of a gelatinase-cleavage peptide with poly(ethylene glycol) (PEG) and poly(ɛ-caprolactone) (PCL)-based structure for tumor-targeted docetaxel delivery (DOC-TNPs). The docetaxel-loaded PEG-PCL nanoparticles (DOC-NPs) that did not display gelatinase-stimuli behaviors were used as a control. We found clear evidence that the DOC-TNPs were transformed by gelatinases, allowing drug release and enhancing the cellular uptake of DOC (P < 0.01). In vivo biodistribution study demonstrated that targeted DOC-TNPs could accumulate and remain in the tumor regions, whereas non-targeted DOC-NPs rapidly eliminated from the tumor tissues. DOC-TNPs exhibited higher tumor growth suppression than commercialized Taxotere® (docetaxel; Jiangsu Hengrui Medicine Company, Jiangsu, China) and DOC-NPs on hepatic H22 tumor model via intravenous administration (P < 0.01). Both in vitro and in vivo experiments suggest that the gelatinase-mediated nanoscale delivery system is promising for improvement of antitumor efficacy in various overexpressed gelatinase cancers.
doi:10.2147/IJN.S26697
PMCID: PMC3265997  PMID: 22287839
drug delivery; stimuli-responsive; gelatinase; antitumor; docetaxel
7.  Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles 
PLoS ONE  2011;6(9):e24172.
Aims
The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs) are able to overcome this “pH-induced physiological drug resistance” (PIPDR) by delivering drugs to the cancer cells via endocytosis rather than passive diffussion.
Materials and Methods
As a model nanoparticle, Tetradrine (Tet, Pka 7.80) was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively) by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo.
Results
The cytotoxicity of free Tet decreased prominently (P<0.05) when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects.
Conclusion
The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect.
doi:10.1371/journal.pone.0024172
PMCID: PMC3180282  PMID: 21966359
8.  Expression of cadherin10, a type II classic cadherin gene, in the nervous system of the embryonic zebrafish 
Gene expression patterns : GEP  2006;6(7):703-710.
Cadherins are cell surface adhesion molecules that play important roles in development of tissues and organs. In this study we analyzed expression pattern of cadherin10, a member of the type II classic cadherin subfamily, in the embryonic zebrafish using in situ hybridization methods. cadherin10 message (cdh10) is first and transiently expressed by the notochord. In the developing nervous system, cdh10 was first detected in a subset of the cranial ganglia, then in restricted brain regions and neural retina. As development proceeds, cdh10 expression domain and/or expression levels increased in the embryonic nervous system. Our results show that cdh10 expression in the zebrafish developing nervous system is both spatially and temporally regulated.
doi:10.1016/j.modgep.2005.12.009
PMCID: PMC2562320  PMID: 16488669
zebrafish; development; cell adhesion molecules; brain; cranial and lateral line ganglia
9.  Cadherin-4 Plays a Role in the Development of Zebrafish Cranial Ganglia and Lateral line System 
We previously reported that cadherin4 (also called R-cadherin) was expressed by the majority of the developing zebrafish cranial and lateral line ganglia. Cadherin4 function in the formation of these structures in zebrafish was studied using morpholino antisense technology. Differentiation of the cranial and lateral line ganglia, and lateral line nerve and neuromasts of the cadherin4 morphants was analyzed using multiple neural markers. We found that a subset of the morphants cranial and lateral line ganglia were disorganized, smaller, with reduced staining, and/or with altered shape compared to control embryos. Increased cell death in the morphant ganglia likely contributed to these defects. Moreover, cadherin4 morphants had shorter lateral line nerves and reduced number of neuromasts, which was likely caused by disrupted migration of the lateral line primordia. These results indicate that cadherin4 plays a role in the normal formation of the zebrafish lateral line system and a subset of the cranial ganglia.
doi:10.1002/dvdy.21085
PMCID: PMC2504752  PMID: 17279575
zebrafish; development; lateral line nerve, neuromasts; cell adhesion molecules; cranial nerves
10.  Cloning and expression analysis of cadherin7 in the central nervous system of the embryonic zebrafish 
Gene expression patterns : GEP  2006;7(1-2):15-22.
Cadherin cell adhesion molecules exhibit unique expression patterns during development of the vertebrate central nervous system. In this study we obtained a full-length cDNA of a novel zebrafish cadherin using reverse transcriptase-polymerase chain reaction (RT-PCR) and 5′ and 3′ rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of this molecule is most similar to the published amino acid sequences of chicken and mammalian cadherin7 (Cdh7), a member of the type II cadherin subfamily. cadherin7 message (cdh7) expression in embryonic zebrafish was studied using in situ hybridization and RT-PCR methods. cdh7 expression begins at about 12 hours post fertilization (hpf) in a small patch in the anterior neural keel, and along the midline of the posterior neural keel. By 24 hpf, cdh7 expression in the brain shows a distinct segmental pattern that reflects the neuromeric organization of the brain, while its expression domain in the spinal cord is continuous, but confined to the middle region of the spinal cord. As development proceeds, cdh7 expression is detected in more regions of the brain, including the major visual structures in the fore- and midbrains, while its expression domain in the hindbrain becomes more restricted, and its expression in the spinal cord becomes undetectable. cdh7 expression becomes reduced in 3-day old embryos. Our results show that cdh7 expression in the zebrafish developing central nervous system is both spatially and temporally regulated.
doi:10.1016/j.modgep.2006.05.002
PMCID: PMC1716651  PMID: 16774849
zebrafish; development; cell adhesion molecules; brain; spinal cord; visual system
11.  cadherin-6 message Expression in the Nervous System of Developing Zebrafish 
Cadherins are cell surface adhesion molecules that play important roles in development of a variety of tissues including the nervous system. In this study we analyzed expression pattern of cadherin-6, a member of the type II cadherin subfamily, in the embryonic zebrafish nervous system using in situ hybridization methods. cadherin-6 message is first expressed by the neural keel, then by restricted regions in the brain and spinal cord. cadherin-6 expression in the brain transiently delineates specific brain regions. In the peripheral nervous system, cadherin-6 message is expressed by the neurogenic placodes and the dorsal root ganglia. As development proceeds, cadherin-6 expression domain and/or expression levels increased in the embryonic nervous system. Our results show that cadherin-6 expression in the zebrafish developing nervous system is both spatially and temporally regulated, implicating a role for cadherin-6 in the formation of these nervous structures.
doi:10.1002/dvdy.20607
PMCID: PMC1360229  PMID: 16258934
zebrafish; development; cell adhesion molecules; brain, cranial ganglia, lateral line system
12.  Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development 
Background
Cadherins are cell surface adhesion molecules that play important roles in development of vertebrate tissues and organs. We studied cadherin2 expression in developing zebrafish heart using in situ hybridization and immunocytochemical methods, and we found that cadherin2 was strongly expressed by the myocardium of the embryonic zebrafish. To gain insight into cadherin2 role in the formation and function of the heart, we analyzed cardiac differentiation and performance in a cadherin2 mutant, glass onion (glo).
Results
We found that the cadherin2 mutant had enlarged pericardial cavity, disorganized atrium and ventricle, and reduced expression of a ventricular specific marker vmhc. Individual myocardiocytes in the glo mutant embryos became round shaped and loosely aggregated. In vivo measurements of cardiac performance revealed that the mutant heart had significantly reduced heart rate, stroke volume and cardiac output compared to control embryos. Formation of the embryonic vascular system in the glo mutants was also affected.
Conclusion
Our results suggest that cadherin2 plays an essential role in zebrafish cardiovascular development. Although the exact mechanisms remain unknown as to the formation of the enlarged pericardium and reduced peripheral blood flow, it is clear that myocardiocyte differentiation and physiological cardiovascular performance is impaired when cadherin2 function is disrupted.
doi:10.1186/1471-213X-6-23
PMCID: PMC1523202  PMID: 16719917
13.  Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans 
Human Gene Therapy  2013;24(4):431-442.
Abstract
In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.
Parzych and colleagues assess the effect of immunosuppression (IS) when used for organ transplantation on immune responses to adeno-associated virus (AAV) capsid antigens. Transplant patients and comorbid control subjects had markedly higher frequencies of circulating AAV capsid–specific T cells compared with healthy adults. IS treatment resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase.
doi:10.1089/hum.2012.246
PMCID: PMC3631016  PMID: 23461589
14.  Smooth Muscle Cell Contraction Increases the Critical Buckling Pressure of Arteries 
Journal of biomechanics  2012;46(4):841-844.
Recent in vitro experiments demonstrated that arteries under increased internal pressure or decreased axial stretch may buckle into the tortuous pattern that is commonly observed in aging or diseased arteries in vivo. It suggests that buckling is a possible mechanism for the development of artery tortuosity. Vascular tone has significant effects on arterial mechanical properties but its effect on artery buckling is unknown. The objective of this study was to determine the effects of smooth muscle cell contraction on the critical buckling pressure of arteries. Porcine common carotid arteries were perfused in an ex vivo organ culture system overnight under physiological flow and pressure. The perfusion pressure was adjusted to determine the critical buckling pressure of these arteries at in vivo and reduced axial stretch ratios (1.5 and 1.3) at baseline and after smooth muscle contraction and relaxation stimulated by norepinephrine and sodium nitroprusside, respectively. Our results demonstrated that the critical buckling pressure was significantly higher when the smooth muscle was contracted compared with relaxed condition (97.3mmHg versus 72.9mmHg at axial stretch ratio of 1.3 and 93.7mmHg vs 58.6mmHg at 1.5, p<0.05). These results indicate that arterial smooth muscle cell contraction increased artery stability.
doi:10.1016/j.jbiomech.2012.11.040
PMCID: PMC3568186  PMID: 23261241
critical buckling pressure; mechanical instability; smooth muscle cell contraction; vascular tone; stability
15.  The Autographa californica Multiple Nucleopolyhedrovirus ORF78 Is Essential for Budded Virus Production and General Occlusion Body Formation 
Journal of Virology  2013;87(15):8441-8450.
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in the baculovirus life cycle, an AcMNPV mutant with ac78 deleted, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype, indicating that no infectious budded viruses (BVs) were produced. The defect in BV production was also confirmed by both viral titration and Western blotting. However, viral DNA replication was unaffected, and occlusion bodies were formed. An analysis of BVs and occlusion-derived viruses (ODVs) revealed that AC78 is associated with both forms of the virions and is an envelope structural protein. Electron microscopy revealed that AC78 also plays an important role in the embedding of ODV into the occlusion body. The results of this study demonstrate that AC78 is a late virion-associated protein and is essential for the viral life cycle.
doi:10.1128/JVI.01290-13
PMCID: PMC3719795  PMID: 23698311
16.  Immune history shapes specificity of pandemic H1N1 influenza antibody responses 
The Journal of Experimental Medicine  2013;210(8):1493-1500.
The specificity of H1N1 antibody responses can be shifted to epitopes near the HA receptor–binding domain after sequential infections with viral strains that share homology in this region.
Human antibody responses against the 2009 pandemic H1N1 (pH1N1) virus are predominantly directed against conserved epitopes in the stalk and receptor-binding domain of the hemagglutinin (HA) protein. This is in stark contrast to pH1N1 antibody responses generated in ferrets, which are focused on the variable Sa antigenic site of HA. Here, we show that most humans born between 1983 and 1996 elicited pH1N1 antibody responses that are directed against an epitope near the HA receptor–binding domain. Importantly, most individuals born before 1983 or after 1996 did not elicit pH1N1 antibodies to this HA epitope. The HAs of most seasonal H1N1 (sH1N1) viruses that circulated between 1983 and 1996 possess a critical K133 amino acid in this HA epitope, whereas this amino acid is either mutated or deleted in most sH1N1 viruses circulating before 1983 or after 1996. We sequentially infected ferrets with a 1991 sH1N1 virus and then a pH1N1 virus. Sera isolated from these animals were directed against the HA epitope involving amino acid K133. These data suggest that the specificity of pH1N1 antibody responses can be shifted to epitopes near the HA receptor–binding domain after sequential infections with sH1N1 and pH1N1 viruses that share homology in this region.
doi:10.1084/jem.20130212
PMCID: PMC3727314  PMID: 23857983
17.  Mechanical Buckling of Arterioles in Collateral Development 
Collateral arterioles enlarge in both diameter and length, and develop corkscrew-like tortuous patterns during remodeling. Recent studies showed that artery buckling could lead to tortuosity. The objective of this study was to determine arteriole critical buckling pressure and buckling pattern during arteriole remodeling. Arterioles were modeled as elastic cylindrical vessels with an elastic matrix support and underwent axial and radial growth. Our results demonstrated that arteriole critical buckling pressure decreased with increasing axial growth ratio and radius growth ratio, but increased with increasing wall thickness. Arteriole buckling mode number increased (wave length decreased) with increasing axial growth ratio, but decreased with increasing radius growth ratio and wall thickness. Our study suggests that axial growth in arterioles makes them prone to buckling and that buckling leads to tortuous collaterals. These results shed light on the mechanism of collateral arteriole tortuosity.
doi:10.1016/j.jtbi.2012.09.029
PMCID: PMC3498525  PMID: 23034307
arteriole buckling; tortuosity; critical pressure; remodeling; axial growth ratio; radius growth ratio; artery; modeling
18.  Prevention of infection in immunosuppressive patients with autoimmune nephrosis by using an immunostimulating bacterial lysate Broncho-vaxom 
Human Vaccines & Immunotherapeutics  2012;8(12):1802-1807.
The utilization of immunosuppressive agents presents patients with autoimmune nephrosis at a high risk of infection. The present trial was to investigate the efficacy and safety of Broncho-Vaxom on preventing infection in immunosuppressive patients with autoimmune nephrosis.
Methods: 40 patients with autoimmune nephrosis were randomly divided into two groups. The control group (20 cases) routinely received corticosteroid and (or) immunosuppressive therapy, while the treatment group (20 cases) received a capsule containing 7 mg Broncho-Vaxom daily for the first 10 d of each month for 3 consecutive months on the basis of conventional corticosteroid and (or) immunosuppressive therapy. The condition of infection and blood lymphocyte were assessed.
Results: 4 patients in the treatment group and 5 patients in the control group were lost during the follow-up period. 25% of patients in the treatment group and 40% of patients in the control group suffered infection. There was no difference in the incidence of infection between the two groups (p > 0.05), while Broncho-Vaxom treated patients suffered a shorter infection period and of which fewer patients need to receive antibiotics therapy (p < 0.05). After the treatment with Broncho-Vaxom, the total number of blood T lymphocyte, proportion of CD4+ T lymphocyte, CD4+/CD8+ reduced less and the serum IgG rose more obviously (p < 0.05), but the blood lymphocyte, B lymphocyte, CD8+ T lymphocyte, IgA and IgM have no differences between the two groups (p > 0.05).
Conclusion: Broncho-Vaxom might be a good choice for preventing the respiratory infection in nephrosis, especially in the patients under the therapy of immunosuppressive agents.
doi:10.4161/hv.21874
PMCID: PMC3656069  PMID: 22922768
Glomerulonephritis; Immunostimulating Bacterial Lysate; Nephrotic Syndrome; Respiratory infection; T lymphocyte subsets; glomerulonephritis
19.  Systematic Comparison of Fractionation Methods for In-depth Analysis of Plasma Proteomes 
Journal of proteome research  2012;11(6):3090-3100.
Discovery and validation of plasma biomarkers are quite challenging due to the high complexity and wide dynamic range of the plasma proteome. Current plasma protein profiling strategies usually use major protein immunodepletion and nanoLC-MS/MS as the first and final analytical steps, respectively, but additional fractionation is needed to detect and quantify low-abundant disease biomarkers. In this study, the performance of 1-D SDS-PAGE, peptide isoelectrofocusing, and peptide high pH reverse-phase chromatography for fractionation of immunodepleted human plasma were systematically compared by evaluating protein coverage, peptide resolution, and capacity to detect known low-abundant proteins. Trade-offs between increasing the number of fractions to improve proteome coverage and resulting decreases in throughput also were assessed. High pH reverse-phase HPLC exhibited the highest peptide resolution and yielded the best depth of analysis with detection of the largest number of known low-abundant proteins for a given level of fractionation. Another advantage of using high pH reverse-phase fractionation rather than 1-D SDS gels is that all fractionation steps except for abundant protein depletion occur at the peptide level, making this strategy more compatible with quantitative biomarker validation methods such as stable isotope dilution multiple reaction monitoring.
doi:10.1021/pr201068b
PMCID: PMC3430803  PMID: 22536952
plasma proteome; proteome fractionation; protein profiling; biomarkers; human plasma; biomarker discovery; biomarker validation
20.  A Novel Measure of Dietary Change in a Prostate Cancer Dietary Program Incorporating Mindfulness Training 
Diet may represent a modifiable prostate cancer (CaP) risk factor, but a vegetable-based prostate-healthy diet is a major change for most men. We used a ratio of animal:vegetable proteins (A:V ratio) to evaluate whether a comprehensive dietary change was self-sustaining following completion of 11 weekly dietary and cooking classes that integrated mindfulness training (MT). Thirty-six men with recurring CaP were randomized to the intervention or wait-list control. Assessments were at baseline, three months and six months. Of the 17 men randomized to the intervention, 14 completed the requirements. Nineteen were randomized to control and 17 completed requirements. Compared to controls, a significant post-intervention (3 months) decrease in A:V ratio in the intervention group (p=.01) was self-maintained 3 months post-intervention (p=0.049). At each assessment, the A:V ratio was correlated with lycopene, fiber, saturated fat, and dietary cholesterol; four dietary components linked to clinically relevant outcomes in CaP. Change in A:V ratio was also significantly correlated with changes in fiber, saturated fat and dietary cholesterol intake. Participants reported regular MT practice and there was a significant correlation between MT practice and changes in both initiation and maintenance of the change in the A:V ratio. These pilot results provide encouraging evidence for the feasibility of a dietary program that includes MT in supporting dietary change for men with recurrent CaP and invite further study to explore the possible role of MT as a means of supporting both initiation of dietary changes and maintenance of those changes over time.
doi:10.1016/j.jand.2012.06.008
PMCID: PMC3483420  PMID: 22853988
diet; maintenance; prostate cancer; clinical trial; mindfulness
21.  CD20-Targeted T Cells after Stem Cell Transplantation for High Risk and Refractory Non-Hodgkin’s Lymphoma 
A phase I trial of infusing anti-CD3 × anti-CD20 bispecific antibody (CD20Bi) armed activated T cells (aATC) was conducted in high-risk/refractory non-Hodgkin’s lymphoma patients to determine whether aATC infusions are safe, affect immune recovery, and induce an antilymphoma effect. Ex vivo expanded ATC from 12 patients were armed with anti-CD20 bispecific antibody, cryopreserved, and infused after autologous stem cell transplantation (SCT). Patients underwent SCT after high-dose chemotherapy, and aATC infusions were started on day +4. The patients received 1 infusion of aATC per week for 4 weeks after SCT with doses of 5,10,15, and 20 × 109. aATC infusions were safe and did not impair engraftment. The major side effects were chills, fever, hypotension, and fatigue. The mean number of IFN-γ Enzyme-linked Immunosorbent Spots (ElSpots) directed at CD20 positive lymphoma cells (DAUDI, P = .0098) and natural killer cell targets (K562, P < .0051) and the mean specific cytotoxicity directed at DAUDI (P = .037) and K562 (P = .002) from pre-SCT to post-SCT were significantly higher. The increase in IFN-γ EliSpots from pre-SCT to post-SCT in patients who received armed ATC after SCT were significantly higher than those in patients who received SCT alone (P = .02). Serum IL-7, IL-15, Macrophage inflammatory protein (MIP)-1 beta, IP-10, MIP-1α, and Monokine induced by gamma interferone increased within hours after infusion. Polyclonal and specific antibodies were near normal 3 months after SCT. aATC infusions were safe and increased innate and specific antilymphoma cell immunity without impairing antibody recovery after SCT.
doi:10.1016/j.bbmt.2013.03.010
PMCID: PMC3794673  PMID: 23529012
Non-Hodgkin lymphoma; Activated T cells; Bispecific antibody; Autologous stem cell; transplantation
22.  Protocadherin-17 Function in Zebrafish Retinal Development 
Developmental neurobiology  2013;73(4):259-273.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina.
doi:10.1002/dneu.22053
PMCID: PMC3579003  PMID: 22927092
cell adhesion molecules; eye; retinal cells differentiation; optic nerve
23.  Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development 
Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day old larvae. We found that blocking leptin A function had little effect on the development of early brain (1 day old), but differentiation of both the morphant dorsal brain and retinal cells was severely disrupted in older (2 day old) embryos. Despite the enlarged pericardial cavity, differentiation of cardiac cells appeared to be similar to control embryos. Formation of the morphants’ inner ear is also severely disrupted, which corroborates existing reports of leptin receptor expression in inner ear of both zebrafish and mammals. Co-injection of leptin A MO and recombinant leptin results in partial rescue of the wild-type phenotype. Our results suggest that leptin A plays distinct roles in zebrafish development.
doi:10.1016/j.ygcen.2012.07.011
PMCID: PMC3428433  PMID: 22841760
differentiation; central nervous system; metabolism; bone; auditory; visual
24.  Transcriptome Profiling Reveals Th17-Like Immune Responses Induced in Zebrafish Bath-Vaccinated with a Live Attenuated Vibrio anguillarum 
PLoS ONE  2013;8(9):e73871.
Background
A candidate vaccine, live attenuated Vibrio anguillarum developed in our laboratory could prevent vibriosis of fish resulted from V. anguillarum and V. alginolyticus. To elucidate the molecular mechanisms underlying the vaccine protection, we used microarray technology to compare the spleen transcriptomes of bath-vaccinated and unvaccinated zebrafish at 28 days post vaccination.
Principal Findings
A total of 2164 genes and transcripts were differentially expressed, accounting for 4.9% of all genes represented on the chip. In addition to iron metabolism related to the innate immunity and the signaling pathways, these differentially expressed genes also involved in the adaptive immunity, mainly including the genes associated with B and T cells activation, proliferation and expansion. Transcription profiles of Th17-related transcription factors, cytokines and cytokine receptors during 35 days post-vaccination implied that Th17 cells be activated in bath-vaccinated zebrafish.
Conclusion/Significance
The transcriptome profiling with microarray revealed the Th17-like immune response to bath-vaccination with the live attenuated V. anguillarum in zebrafish.
doi:10.1371/journal.pone.0073871
PMCID: PMC3762715  PMID: 24023910
25.  The NLRP12 inflammasome recognizes Yersinia pestis 
Immunity  2012;37(1):96-107.
Summary
Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1β, which are generated through caspase-1–activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A,and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1β production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB._ These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.
doi:10.1016/j.immuni.2012.07.006
PMCID: PMC3753114  PMID: 22840842

Results 1-25 (98)