Search tips
Search criteria

Results 1-25 (200)

Clipboard (0)
more »
Year of Publication
more »
1.  Long-term Follow-up of Therapeutic ERCP in 78 Patients Aged 90 Years or Older 
Scientific Reports  2014;4:4918.
This study aimed to determine the performance and long-term outcomes of therapeutic ERCP in very old patients. Patients aged or over 90 (Group A, n = 78) and consecutive sex-matched controls (Group B, n = 312) under 65 selected were compared. More patients in Group A had chronic concomitant diseases, but the success and complication rates were comparable. The follow-up of 61 patients (78.2%) in Group A were done, with a mean period of 27.5 (3–54) months. Seven patients survived; the main causes of death for the other patients were concomitant diseases (n = 43) and primary diseases (n = 11). In patients with choledocholithiasis, cases with complete extractions of stones in bile ducts survived longer than those without (30 vs. 24 months, P < 0.001). Therapeutic ERCP in patients aged 90 years or older is effective and safe. In patients with choledocholithiasis, complete clearance of stones is associated with longer survival time.
PMCID: PMC4018606  PMID: 24819780
2.  High Levels of BCOX1 Expression Are Associated with Poor Prognosis in Patients with Invasive Ductal Carcinomas of the Breast 
PLoS ONE  2014;9(1):e86952.
This study was to examine the breast cancer-overexpressed gene 1 (BCOX1) expression in invasive ductal carcinomas (IDC) of the breast and its value in the prognosis of the disease. The levels of BCOX1 expression in 491 paired IDC and surrounding non-tumor breast tissues as well as 40 paired fresh specimens were evaluated by tissue microarray, immunohistochemistry and quantitative RT-PCR. The potential associations of high BCOX1 expression with clinicopathological variables and the overall survival of these patients were analyzed. The relative levels of BCOX1 mRNA transcripts in the IDC breast tissues were significantly higher than that in the corresponding non-tumor tissues (P = 0.005). The anti-BCOX1 was predominantly stained in the cytoplasm of breast tissue cells and the levels of BCOX1 expression in the majority of breast cancer tissues were obviously higher than that in the corresponding non-tumor breast tissues. High levels of BCOX1 expression were found in 59.5% (292/491) of breast cancer tissues. The high BCOX1 expression was significantly associated with high histological grade (P = 0.037), positive expression of human epidermal growth factor receptor 2 (HER2, P = 0.031) and triple negative breast cancer (P = 0.027). The high BCOX1 expression in breast cancers was significantly associated with a shorter overall survival of these patients (P = 0.023), particularly in patients with triple negative breast cancer (P = 0.005). Therefore, the high BCOX1 expression may serve as a novel marker of poor prognosis and a potential therapeutic target for patients with IDC of the breast.
PMCID: PMC3904964  PMID: 24489812
3.  The Development of Nasal Polyp Disease Involves Early Nasal Mucosal Inflammation and Remodelling 
PLoS ONE  2013;8(12):e82373.
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by both a chronic inflammation and tissue remodelling; as indicated by extracellular matrix protein deposition, basement membrane thickening, goblet cell hyperplasia and subepithelial edema, with reduced vessels and glands. Although remodelling is generally considered to be consequence of persistent inflammation, the chronological order and relationship between inflammation and remodelling in polyp development is still not clear. The aim of our study was therefore to investigate the pathological features prevalent in the development of nasal polyps and to elucidate the chronological order and relationship between inflammation and remodelling, by comparing specific markers of inflammation and remodelling in early stage nasal polyps confined to the middle turbinate (refer to as middle turbinate CRSwNP) obtained from 5 CRSwNP patients with bilateral polyposis, mature ethmoidal polyps from 6 CRSwNP patients, and normal nasal mucosal tissue from 6 control subjects. Middle turbinate CRSwNP demonstrated significantly more severe epithelial loss compared to mature ethmoidal polyps and normal nasal mucosa. The epithelial cell junction molecules E-cadherin, ZO-1 and occludin were also expressed in significantly lower amounts in mature ethmoidal polyps compared to healthy mucosa. Middle turbinate CRSwNP were further characterized by significantly increased numbers of subepithelial eosinophils and M2 type macrophages, with a distinct lack of collagen and deposition of fibronectin in polyp part. In contrast, the turbinate area of the middle turbinate CRSwNP was characterized by an increase in TGF-β activated myofibroblasts expressing α-SMA and vimentin, an increase in the number of pSmad2 positive cells, as well as increased deposition of collagen. These findings suggest a complex network of processes in the formation of CRSwNP; including gross epithelial damage and repair reactions, eosinophil and macrophage cell infiltration, and tissue remodelling. Furthermore, remodelling appears to occur in parallel, rather than subsequent to inflammation.
PMCID: PMC3858290  PMID: 24340021
4.  Disruption of Growth Factor Receptor–Binding Protein 10 in the Pancreas Enhances β-Cell Proliferation and Protects Mice From Streptozotocin-Induced β-Cell Apoptosis 
Diabetes  2012;61(12):3189-3198.
Defects in insulin secretion and reduction in β-cell mass are associated with type 2 diabetes in humans, and understanding the basis for these dysfunctions may reveal strategies for diabetes therapy. In this study, we show that pancreas-specific knockout of growth factor receptor–binding protein 10 (Grb10), which is highly expressed in pancreas and islets, leads to elevated insulin/IGF-1 signaling in islets, enhanced β-cell mass and insulin content, and increased insulin secretion in mice. Pancreas-specific disruption of Grb10 expression also improved glucose tolerance in mice fed with a high-fat diet and protected mice from streptozotocin-induced β-cell apoptosis and body weight loss. Our study has identified Grb10 as an important regulator of β-cell proliferation and demonstrated that reducing the expression level of Grb10 could provide a novel means to increase β-cell mass and reduce β-cell apoptosis. This is critical for effective therapeutic treatment of both type 1 and 2 diabetes.
PMCID: PMC3501856  PMID: 22923474
5.  Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703 
Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.
PMCID: PMC3382817  PMID: 22754333
Pokemon; anoikis; Bim; hepatoma
6.  Exploiting an Allosteric Binding Site of PRMT3 Yields Potent and Selective Inhibitors 
Journal of medicinal chemistry  2013;56(5):2110-2124.
Protein arginine methyltransferases (PRMTs) play an important role in diverse biological processes. Among the nine known human PRMTs, PRMT3 has been implicated in ribosomal biosynthesis via asymmetric dimethylation of the 40S ribosomal protein S2 and in cancer via interaction with the DAL-1 tumor suppressor protein. However, few selective inhibitors of PRMTs have been discovered. We recently disclosed the first selective PRMT3 inhibitor, which occupies a novel allosteric binding site and is noncompetitive with both the peptide substrate and cofactor. Here we report comprehensive structure–activity relationship studies of this series, which resulted in the discovery of multiple PRMT3 inhibitors with submicromolar potencies. An X-ray crystal structure of compound 14u in complex with PRMT3 confirmed that this inhibitor occupied the same allosteric binding site as our initial lead compound. These studies provide the first experimental evidence that potent and selective inhibitors can be created by exploiting the allosteric binding site of PRMT3.
PMCID: PMC4319713  PMID: 23445220
7.  IgM, IgG, and IgA Antibody Responses to Influenza A(H1N1)pdm09 Hemagglutinin in Infected Persons during the First Wave of the 2009 Pandemic in the United States 
The novel influenza A(H1N1)pdm09 virus caused an influenza pandemic in 2009. IgM, IgG, and IgA antibody responses to A(H1N1)pdm09 hemagglutinin (HA) following A(H1N1)pdm09 virus infection were analyzed to understand antibody isotype responses. Age-matched control sera collected from U.S. residents in 2007 and 2008 were used to establish baseline levels of cross-reactive antibodies. IgM responses often used as indicators of primary virus infection were mainly detected in young patient groups (≤5 years and 6 to 15 years old), not in older age groups, despite the genetic and antigenic differences between the HA of A(H1N1)pdm09 virus and pre-2009 seasonal H1N1 viruses. IgG and IgA responses to A(H1N1)pdm09 HA were detected in all age groups of infected persons. In persons 17 to 80 years old, paired acute- and convalescent-phase serum samples demonstrated ≥4-fold increases in the IgG and IgA responses to A(H1N1)pdm09 HA in 80% and 67% of A(H1N1)pdm09 virus-infected persons, respectively. The IgG antibody response to A(H1N1)pdm09 HA was cross-reactive with HAs from H1, H3, H5, and H13 subtypes, suggesting that infections with subtypes other than A(H1N1)pdm09 might result in false positives by enzyme-linked immunosorbent assay (ELISA). Lower sensitivity compared to hemagglutination inhibition and microneutralization assays and the detection of cross-reactive antibodies against homologous and heterologous subtype are major drawbacks for the application of ELISA in influenza serologic studies.
PMCID: PMC4135911  PMID: 24872516
8.  Multimodal Magnetic Resonance Imaging: The Coordinated Use of Multiple, Mutually Informative Probes to Understand Brain Structure and Function 
Human brain mapping  2011;34(2):253-271.
Differing imaging modalities provide unique channels of information to probe differing aspects of the brain’s structural or functional organization. In combination, differing modalities provide complementary and mutually informative data about tissue organization that is more than their sum. We acquired and spatially coregistered data in four MRI modalities – anatomical MRI, functional MRI, diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) – from 20 healthy adults to understand how inter-individual variability in measures from one modality account for variability in measures from other modalities at each voxel of the brain. We detected significant correlations of local volumes with the magnitude of functional activation, suggesting that underlying variation in local volumes contributes to individual variability in functional activation. We also detected significant inverse correlations of NAA (a putative measure of neuronal density and viability) with volumes of white matter in the frontal cortex, with DTI-based measures of tissue organization within the superior longitudinal fasciculus, and with the magnitude of functional activation and default-mode activity during simple visual and motor tasks, indicating that substantial variance in local volumes, white matter organization, and functional activation derives from an underlying variability in the number or density of neurons in those regions. Many of these imaging measures correlated with measures of intellectual ability within differing brain tissues and differing neural systems, demonstrating that the neural determinants of intellectual capacity involve numerous and disparate features of brain tissue organization, a conclusion that could be made with confidence only when imaging the same individuals with multiple MRI modalities.
PMCID: PMC4284056  PMID: 22076792
multimodal MRI; anatomical MRI; functional MRI; diffusion tensor imaging; magnetic resonance spectroscopy; correlation; brain structure; brain function
9.  Regulation of Adiponectin Multimerization, Signaling and Function 
Adiponectin, which exists in serum in three major complexes including trimer, hexamer, and the high molecular weight (HMW) form, has strong insulin sensitizing, antiinflammatory and anti-diabetic functions. Different adiponectin complexes exert tissue-specific biological functions and activate distinct signaling pathways. In this review, we summarize our current understanding on the mechanisms regulating adiponectin multimerization. We also describe the major target tissues in which distinct adiponectin multimers exert their functional roles. Finally, we discuss the potential involvement of endoplasmic reticulum stress and mitochondrial stress in diet-induced adiponectin downregulation and highlight the roles of Disulfide bond A oxidoreductase-like protein (DsbA-L) in the prevention of endoplasmic reticulum stress and promotion of adiponectin multimerization, stability, and function.
PMCID: PMC3893790  PMID: 24417943
Adiponectin; Adiponectin multimerization; Adiponectin multimers; DsbA-L; ER stress
10.  Silencing the HaAK Gene by Transgenic Plant-Mediated RNAi Impairs Larval Growth of Helicoverpa armigera 
Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests.
PMCID: PMC4278256  PMID: 25552931
Arginine kinase; Helicoverpa armigera; RNAi; transgenic plants; double-stranded RNA; pest control.
11.  miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates 
Cell Research  2013;23(12):1356-1368.
Previous studies on developmental hematopoiesis have mainly focused on signaling and transcription factors, while the appreciation of epigenetic regulation including that of microRNAs is recent. Here, we show that in zebrafish and mouse, miR-142-3p is specifically expressed in hematopoietic stem cells (HSCs). Knockdown of miR-142a-3p in zebrafish led to a reduced population of HSCs in the aorta-gonad-mesonephros (AGM) region as well as T-cell defects in the thymus. Mechanistically, miR-142a-3p regulates HSC formation and differentiation through the repression of interferon regulatory factor 7 (irf7)-mediated inflammation signaling. Finally, we show that miR-142-3p is also involved in the development of HSCs in mouse AGM, suggesting that it has a highly conserved role in vertebrates. Together, these findings unveil the pivotal roles that miR-142a-3p plays in the formation and differentiation of HSCs by repressing irf7 signaling.
PMCID: PMC3847575  PMID: 24165894
hematopoietic stem cell; miR-142a-3p; irf7; zebrafish; mouse
12.  The Effects of Changing Water Content, Relaxation Times, and Tissue Contrast on Tissue Segmentation and Measures of Cortical Anatomy in MR Images 
Magnetic resonance imaging  2013;31(10):1709-1730.
Water content is the dominant chemical compound in the brain and it is the primary determinant of tissue contrast in magnetic resonance (MR) images. Water content varies greatly between individuals, and it changes dramatically over time from birth through senescence of the human life span. We hypothesize that the effects that individual- and age-related variations in water content have on contrast of the brain in MR images also has important, systematic effects on in vivo, MRI-based measures of regional brain volumes. We also hypothesize that changes in water content and tissue contrast across time may account for age-related changes in regional volumes, and that differences in water content or tissue contrast across differing neuropsychiatric diagnoses may account for differences in regional volumes across diagnostic groups.
We demonstrate in several complementary ways that subtle variations in water content across age and tissue compartments alter tissue contrast, and that changing tissue contrast in turn alters measures of the thickness and volume of the cortical mantle: (1) We derive analytic relations describing how age-related changes in tissue relaxation times produce age-related changes in tissue gray-scale intensity values and tissue contrast; (2) We vary tissue contrast in computer-generated images to assess its effects on tissue segmentation and volumes of gray matter and white matter; and (3) We use real-world imaging data from adults with either Schizophrenia or Bipolar Disorder and age- and sex-matched healthy adults to assess the ways in which variations in tissue contrast across diagnoses affects group differences in tissue segmentation and associated volumes.
We conclude that in vivo MRI-based morphological measures of the brain, including regional volumes and measures of cortical thickness, are a product of, or at least are confounded by, differences in tissue contrast across individuals, ages, and diagnostic groups, and that differences in tissue contrast in turn likely derive from corresponding differences in water content of the brain across individuals, ages, and diagnostic groups.
PMCID: PMC4241465  PMID: 24055410
Anatomical MRI; Tissue Contrast; Segmentation; Markov Random Field; Expectation Maximization
13.  Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling 
Scientific Reports  2014;4:7102.
For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.
PMCID: PMC4236754  PMID: 25407432
14.  Pentraxin 3 as a Prognostic Biomarker in Patients with Systemic Inflammation or Infection 
Mediators of Inflammation  2014;2014:421429.
Purpose. The long pentraxin 3 (PTX3) is a key component of the humoral arm of the innate immune system. PTX3 is produced locally in response to proinflammatory stimuli. We reviewed the usefulness of systemic levels of PTX3 in critically ill patients with systemic inflammatory response syndrome (SIRS), sepsis, and bacteremia, focusing on its diagnostic and prognostic value. Methods. A PubMed search on PTX3 was conducted. The list of papers was narrowed to original studies of critically ill patients. Eleven papers on original studies of critically ill patients that report on PTX3 in SIRS, sepsis, or bacteremia were identified. Results. Systematic levels of PTX3 have little diagnostic value in critically ill patients with SIRS, sepsis, or bacteremia. Systemic levels of PTX3, however, have superior prognostic power over other commonly used biological markers in these patients. Systemic levels of PTX3 correlate positively with markers of organ dysfunction and severity-of-disease classification system scores. Finally, systemic levels of PTX3 remain elevated in the acute phase and decreased on recovery. Notably, the age of the patients and underlying disease affect systemic levels of PTX3. Conclusions. The diagnostic value of PTX3 is low in patients with sepsis. Systemic levels of PTX3 have prognostic value and may add to prognostication of patients with SIRS or sepsis, complementing severity-of-disease classification systems and other biological markers.
PMCID: PMC4235333  PMID: 25530683
15.  ERCC1 Cys8092Ala and XRCC1 Arg399Gln Polymorphisms Predict Progression-Free Survival after Curative Radiotherapy for Nasopharyngeal Carcinoma 
PLoS ONE  2014;9(7):e101256.
Single nucleotide polymorphisms (SNPs) in DNA repair genes can alter gene expression and activity and affect response to cancer treatment and, correspondingly, survival. The present study was designed to evaluate the utility of the XRCC1 Arg399Gln and ERCC1 Cys8092Ala SNPs, measured in pretreatment biopsy samples, as predictors of response to radiotherapy in patients with non-metastatic nasopharyngeal carcinoma (NPC).
Materials and methods
The study included 75 consecutive patients with stage II-IVA-B NPC. XRCC1 Arg399Glu and ERCC1 Cys8092Ala SNPs were identified from paraffin-embedded biopsy specimens via Sanger sequencing. Expression of p53 and pAkt protein was analyzed by immunohistochemical staining. Potential relationships between genetic polymorphisms and progression-free survival (PFS) were analyzed by using a Cox proportional hazards model, the Kaplan-Meier method, and the log-rank test.
Multivariate analysis showed that carriers of the ERCC1 8092 Ala/Ala genotype [hazard ratio (HR) 1.882; 95% confidence interval (CI) 1.031–3.438; P = 0.039] and heavy smokers (≥20 pack-years) carrying the XRCC1 Arg/Arg genotype (HR 2.019; 95% CI 1.010–4.036; P = 0.047) had significantly lower PFS rates. Moreover, combined positive expression of p53 and pAkt led to significantly increased PFS in subgroups carrying the XRCC1 Gln allele (HR 7.057; 95% CI 2.073–24.021; P = 0.002) or the ERCC1 Cys allele (HR 2.568; 95% CI 1.056–6.248; P = 0.038).
The ERCC1 Cys8092Ala polymorphism is an independent predictor of response to radiotherapy for NPC, and the XRCC1 Arg399Glu mutation combined with smoking status seems to predict PFS as well. Our results further suggest a possible correlation between these genetic polymorphisms and p53 protein status on survival.
PMCID: PMC4099069  PMID: 25025378
16.  Sperm, but Not Oocyte, DNA Methylome Is Inherited by Zebrafish Early Embryos 
Cell  2013;153(4):773-784.
5-methylcytosine is a major epigenetic modification that is sometimes called “the fifth nucleotide.” However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo’s methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.
PMCID: PMC4081501  PMID: 23663777
17.  Dissociation of Regional Activity in Default Mode Network in Medication-Naive, First-Episode Somatization Disorder 
PLoS ONE  2014;9(7):e99273.
Patients with somatization disorder (SD) have altered neural activity in the brain regions of the default mode network (DMN). However, the regional alteration of the DMN in SD remains unknown. The present study was designed to investigate the regional alterations of the DMN in patients with SD at rest.
Twenty-five first-episode, medication-naive patients with SD and 28 age-, sex-, education- matched healthy controls underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The fractional amplitude of low-frequency fluctuations (fALFF) was applied to analyze the data.
Patients with SD showed a dissociation pattern of resting-state fALFF in the DMN, with increased fALFF in the bilateral superior medial prefrontal cortex (MPFC, BA8, 9) and decreased fALFF in the left precuneus (PCu, BA7). Furthermore, significantly positive correlation was observed between the z values of the voxels within the bilateral superior MPFC and somatization subscale scores of the Symptom Check List (SCL-90) in patients with SD.
Our findings indicate that there is a dissociation pattern of the anterior and posterior DMN in first-episode, treatment-naive patients with SD. The results provide new insight for the importance of the DMN in the pathophysiology of SD.
PMCID: PMC4077566  PMID: 24983962
18.  Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome 
PLoS ONE  2014;9(4):e95393.
Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function.
PMCID: PMC3989317  PMID: 24740400
19.  Overexpression of S100A7 Protects LPS-Induced Mitochondrial Dysfunction and Stimulates IL-6 and IL-8 in HaCaT Cells 
PLoS ONE  2014;9(3):e92927.
S100A7 (or psoriasin) is distributed in the cytoplasm of keratinocytes of normal human epidermis, and it is overexpressed in many epidermal inflammatory diseases. Lipopolysaccharide (LPS) induces mitochondrial function changes, which play important roles in multiple cellular mechanisms including inflammation. Although S100A7 expression is regulated by various factors in the human epidermis during inflammation, whether S100A7 interacts with mitochondria in keratinocytes is not clear.
Our study was designed to investigate whether S100A7 could prohibit mitochondrial dysfunction and stimulate cytokines in cultured normal HaCaT cells treated with LPS.
We generated HaCaT cells that constitutively express enhanced green fluorescence protein (EGFP)-S100A7 (S100A7-EGFP) or EGFP alone, as a control. Here, we show that S100A7-EGFP HaCaT cells exhibit an increase in mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP). qRT-PCR revealed that expression of three main mitochondrial biogenesis-associated genes was significantly increased: PPAR-coactivator-1alpha (PGC-1α), the mitochondrial transcription factor A (Tfam) and nuclear respiratory factor-1 (NRF1). S100A7 overexpression increased mtDNA content and effectively increased intracellular adenosine 5′-triphosphate (ATP) production, while decreasing reactive oxygen species (ROS) generation. S100A7 overexpression also significantly decreased the expression of Mfn2 and increased DRP1 expression compared with control EGFP cells. S100A7 down-regulated the expression of the autophagy-related proteins Beclin-1 and LC3B. S100A7 also increased expression of IL-6 and IL-8 cytokines. Knockdown of S100A7 decreased MMP and disrupted mitochondrial homeostasis.
These findings demonstrate that S100A7 stimulates mitochondrial biogenesis and increases mitochondrial function in HaCaT cells treated with LPS; and S100A7 also promotes secretion of IL-6 and IL-8.
PMCID: PMC3966836  PMID: 24671027
20.  p53 Regulates Neural Stem Cell Proliferation and Differentiation via BMP-Smad1 Signaling and Id1 
Stem Cells and Development  2012;22(6):913-927.
Neural stem cells (NSCs) play essential roles in nervous system development and postnatal neuroregeneration and their deregulation underlies the development of neurodegenerative disorders. Yet how NSC proliferation and differentiation are controlled is not fully understood. Here we present evidence that tumor suppressor p53 regulates NSC proliferation and differentiation via the bone morphogenetic proteins (BMP)-Smad1 pathway and its target gene inhibitor of DNA binding 1 (Id1). p53 deficiency led to increased neurogenesis in vivo, and biased neuronal differentiation and augmented NSC proliferation of ex vivo NSCs. This is accompanied by elevated Smad1 expression/activation in the brain and NSC, which contributes to accelerated neuronal differentiation of p53−/− NSCs. p53 deficiency also leads to upregulation of Id1, whose expression is repressed by p53 in BMP-Smad1-dependent and -independent manners. Elevated Id1 expression contributes to augmented proliferation and, unexpectedly, accelerated neuronal differentiation of p53−/− NSCs as well. This study reveals a molecular mechanism by which tumor suppressor p53 controls NSC proliferation and differentiation and establishes a connection between p53 and Id1.
PMCID: PMC3585476  PMID: 23199293
21.  Abnormal Default-Mode Network Homogeneity in First-Episode, Drug-Naive Major Depressive Disorder 
PLoS ONE  2014;9(3):e91102.
Default mode network (DMN) is one of the most commonly recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD is poorly understood. As such, this study was conducted to determine whether or not an abnormal network homogeneity (NH) of DMN is observed in patients with first-episode and drug-naive MDD.
Twenty-four first-episode drug-naive patients with MDD and twenty-four healthy control subjects participated in the study. NH and independent component analysis (ICA) methods were used to analyze data.
Depressed patients exhibited a significantly increased NH in the left dorsal medial prefrontal cortex (MPFC) and decreased NH in the right inferior temporal gyrus (ITG) compared with the healthy control subjects. Receiver operating characteristic curves (ROC) were analyzed and results revealed that the NH values of MPFC and ITG could be applied as candidate markers with relatively high sensitivity and specificity to distinguish patients from healthy control subjects. No correlation was observed between the NH values of the two regions and clinical variables.
Our findings suggested that an abnormal DMN homogeneity could be observed in MDD, which highlight the importance of the DMN in the pathophysiology of MDD.
PMCID: PMC3946684  PMID: 24609111
22.  Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase 
Cell Research  2014;24(2):177-189.
The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.
PMCID: PMC3915904  PMID: 24407421
WTAP; m6A methyltransferase; METTL3; METTL14; mRNA
23.  Genomic Evolution of 11 Type Strains within Family Planctomycetaceae 
PLoS ONE  2014;9(1):e86752.
The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system. Subsequently, we identified genomic islands (GIs) and structural variations (SVs) among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications.
PMCID: PMC3906078  PMID: 24489782
24.  Arsenic Sulfide Promotes Apoptosis in Retinoid Acid Resistant Human Acute Promyelocytic Leukemic NB4-R1 Cells through Downregulation of SET Protein 
PLoS ONE  2014;9(1):e83184.
Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with anti-tumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism of action of As4S4 in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET over-expression inhibited it, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also demonstrated that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, over-expression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a pro-apoptotic factor and PMLRARα is an anti-apoptotic factor, our results suggest that As4S4-induced apoptosis in NB4-R1 cells is through the downregulation of SET protein expression, which in turn increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.
PMCID: PMC3890287  PMID: 24454695
25.  Whole-Genome Sequencing of Lactobacillus shenzhenensis Strain LY-73T 
Genome Announcements  2013;1(6):e00972-13.
Lactobacillus shenzhenensis strain LY-73T is a novel species which was first isolated from fermented goods. Here, we report the draft genome sequence of Lactobacillus shenzhenensis LY-73T.
PMCID: PMC3837181  PMID: 24265500

Results 1-25 (200)