PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: involvement of superoxide 
European journal of pharmacology  2010;650(1):328-334.
Although arterial limb tourniquet is one of the first-line treatments to prevent exsanguinating hemorrhage in both civilian pre-hospital and battlefield casualty care, prolonged application of a limb tourniquet can lead to serious ischemia-reperfusion injury. However, the underlying pathomechanisms of tourniquet-induced ischemia-reperfusion injury are still poorly understood. Using a murine model of acute limb ischemia-reperfusion, we investigated if acute limb ischemia-reperfusion injury is mediated by superoxide overproduction and mitochondrial dysfunction. Hind limbs of C57/BL6 mice were subjected to 3 h ischemia and 4 h reperfusion via placement and release of a rubber tourniquet at the greater trochanter. Approximately 40% gastrocnemius muscle suffered infarction in this model. Activities of mitochondrial electron transport chain complexes including complex I, II, III, and IV in gastrocnemius muscle were decreased in the ischemia-reperfusion group compared to sham. Superoxide production was increased while activity of manganese superoxide dismutase (MnSOD, the mitochondria-targeted SOD isoform) was decreased in the ischemia-reperfusion group compared to sham group. Pretreatment with tempol (a SOD mimetic, 50 mg/kg) or co-enzyme Q10 (50 mg/kg) not only decreased the superoxide production, but also reduced the infarct size and normalized mitochondrial dysfunction in the gastrocnemius muscle. Our results suggest that tourniquet-induced skeletal muscle ischemia-reperfusion injuries including infarct size and mitochondrial dysfunction may be mediated via the superoxide over-production and reduced antioxidant activity. In the future, this murine ischemia-reperfusion model can be adapted to mechanistically evaluate anti-ischemic molecules in tourniquet-induced skeletal muscle injury.
doi:10.1016/j.ejphar.2010.10.037
PMCID: PMC3008320  PMID: 21036124
Infarct size; Ischemia-reperfusion injury; Mitochondria; Superoxide; Tourniquet

Results 1-1 (1)